近年来,电动汽车市场的增长显着增长。该行业的主要目标是降低生产成本。值得注意的是,构成总生产成本的40%的电池组将其中约64%分配给电极的制造。监视关键电池参数,例如厚度,负载,密度,电导率和孔隙率,以最大程度地减少电极生产过程中的废物。直到最近,还没有能够模拟这些参数的技术。但是,Terahertz技术已成为一种评估电池电极的强大,无损和安全的方法。电池电极涂在由铝和铜等材料制成的底物上。由于METELS完全反映了Terahertz波,因此可以在反射模式下测量电极。这种方法允许确定涂层的厚度及其复杂的折射率,可以解释以推断关键电极参数。在我们的研究中,我们利用了Teraview的最新进步Teracota,Teracota是一种设计用于工业应用的Terahertz系统,配备了自我引用的Terahertz传感器。传感器安装在龙门上,提供了电极加载的Terahertz图像,并可以与光学图像进行直接比较,从而揭示了阴极上的缺陷。当比较通过Terahertz传感器获得的密度测量与实验室中测量的密度测量值时,我们达到了0.01 g/cm3的精度。关键字:ndt; Terahertz;光谱;电池电极;电动车辆此外,通过Terahertz系统的厚度测量与使用毫米在小于1 µm以内获得的厚度测量。同样,当比较通过Terahertz与通过四点探针测量的DC电导率进行比较时,趋势是一致的。正在进行的孔隙率进行的研究表明,折射率与特定电极集的功率相关,表明可能具有更广泛的应用。这种全面的方法证明了将Terahertz技术集成到电池电极制造过程中的重要优势,从而通过提高效率和降低浪费来彻底改变行业。
抽象的电排放加工是用于导电材料的非规定加工过程之一。它被广泛用于制造复杂的零件,这些零件很难由常规制造过程产生。它基于工件和电极之间的热电能。由于火花在电极和工件之间的缝隙中发生火花,因此通过熔化和汽化来去除金属。工件和电极必须具有导电以产生火花。EDM过程的性能在很大程度上取决于电极。电极被视为EDM过程中的工具。选择电极材料在EDM过程中起着至关重要的作用。不同的电极材料具有不同的特性。因此,EDM过程的性能随不同材料而变化。研究人员已使用不同的材料作为电极来研究材料的影响并改善EDM过程的性能。本文回顾了在EDM工艺中的材料和制造方法领域进行的研究工作。关键字:[EDM,电极,材料,制造过程]简介
摘要 — 要使运动想象脑机接口 (MI-BCI) 技术可用且在实验室外实际使用,主要挑战在于提供在分类准确性方面高效且易于安装的 EEG 系统,例如使用最少数量的干电极。我们假设最佳信号处理方法可能取决于所使用的(干)电极的数量。因此,我们首次比较了与不同干电极设置相关的分类准确性,即从 8 到 32 通道的 7 种配置,以及各种信号处理方法,即 (1) 正则化公共空间模式 (rCSP) + 线性判别分析,(2) rCSP + 支持向量机 (SVM),(3) 到黎曼均值的最小距离和 (4) 黎曼切线空间中的 SVM。此离线比较针对 10 位参与者(每人一个会话)的数据进行。我们的结果表明,无论采用哪种方法,MI-BCI 性能在 8 和 12 个通道时都会显著下降(p < 0.01)。此外,方法 3 的性能最低(p < 0.05)。最后,博士后分析表明,方法 1 和 2 在电极数量最多(28 和 32)时性能最佳。对于方法 4,使用 20 和 24 个通道可获得最佳性能,这似乎是最佳组合(p < 0.05)。这些结果表明,根据所用电极数量选择信号处理管道非常重要。
并非每个国家都可以使用所有产品。将产品用于医学诊断,治疗或治疗目的可能受到地方法规的限制。请联系您当地的蔡司代表以获取更多信息。en_41_012_255 | CZ 10-2021 |设计,交付范围和技术进度如有更改,恕不另行通知。| ©Carl Zeiss显微镜GmbH
在这种情况下,了解电池电极的特征(孔,厚度,密度和电导率)至关重要。确保涂层厚度的均匀性可防止电极之间的不均匀响应并降低降解速率。涂层密度必须在能量密度和预期应用必要的功率要求之间取得平衡。此外,涂层电导率可以提高高排放速率的能力,这对于快速释放至关重要。涂层孔隙率直接影响锂离子电池的效率,性能和寿命。测量这些数量的传统方法通常涉及破坏性技术,限制了其适用性,尤其是在理解实时性能或奥塞兰多行为方面。孔隙率评估传统上涉及破坏性方法,例如汞入侵,气体吸附和液体挤出。X射线扫描虽然有效,但由于其使用辐射而引起了安全问题。此外,电化学阻抗光谱法提供了间接的孔隙度测量,但其复杂性可能会限制其应用。
已证明在太阳能电池中引入贵金属纳米颗粒可以增强钙钛矿太阳能电池的性能。在这项研究中,利用银色改性的光诺德人通过连续的离子层吸附和反应(Silar)程序来改善钙钛矿太阳能电池的性能。由于表面等离子体共振效应,设备的光捕获能力通过出色的光伏特性增强。使用SEM,XRD,UV可见的吸收分光光度计和太阳能模拟器探索了引入的银纳米颗粒(AGNP)的等离子体效应。SEM结果显示紧凑的形态和闪烁的表面,表明存在AGNP。XRD结果显示出良好的晶相。UV-VIS结果显示出具有AGNPS掺入的光学吸收增强。制造的PSC的光伏特性是:(i)原始设备; JSC为6.440 mA/cm 2,VOC。为0.948 V,FF为0.642,PCE为3.917%,(II)具有1架Agnps的装置; JSC为014.426 MA/CM 2,VOC。为0.949 V,FF为0.642,PCE为8.795%,(iii)设备具有2张AGNPS; JSC为10.815 mA/cm 2,VOC为0.917 V,FF为0.558,PCE为5.536%。具有最佳性能的设备是由1个AGNP的1个静音周期制成,显示PCE的增强率为2.245次,JSC的〜2.240次,在参考设备上的VOC中〜1.001倍。这项研究的结果解锁了AGNP的有益作用,并进一步有助于理解由于引入AGNP引起的表面等离子体效应。
kynar®HSV系列PVDF粘合剂系列提供快速溶解,易于加工,高吞吐量,稳定的浆液粘度以及通过许多周期和广泛温度波动的高粘附力。通过Arkema仔细控制粘合剂树脂的功能化,可以实现较低的粘合剂负荷。这允许更高浓度的活性材料,较低的内部电阻和跨电极的高内聚力。HSV系列在电解质中还表现出非常低的肿胀,可以通过微调结晶度量身定制。这些等级提供了一流的能力保留率和电化学抗性,稳定性在宽电压范围内(高达5V li+/li)。热稳定性在此范围内也是稳定的。在电池行业有近20年的经验,我们不仅了解创新的重要性,而且了解一致的质量和供应。通过化学加工行业的全球经验多年(例如,半导体,核,饮用水,医疗保健),我们的团队在非常高的纯度PVDF方面开发了行业领先的能力。
每年将在不久的将来生产数十亿个一次性薄膜电子产品,用于智能包装,物联网和可穿戴生物监测贴片。在这些情况下,传统的刚性电池在形式和人体工程学方面也不是最佳的,也不是生态方面的。迫切需要使用薄,可拉伸,弹性且可回收的新型储能设备。在此,提出了一种新型的材料和制造技术结构,允许完全3D打印的软性薄膜电池对机械应变有弹性,如果可修复,可充电,可回收,并且可以在其寿命结束时回收。通过利用数字可打印的超易碎液态金属电流收集器和新型的镀具有镀碳碳阳极电极,AG 2 O-Gallium电池可快速打印并根据应用程序定制。通过优化镀具有耐碳碳复合材料的性能,获得了26.37 mAh cm-2的创纪录的面积容量,在100%应变时10个周期后改善了10.32 mAh cm-2,而前所未有的最大应变耐受性为≈200%。部分损坏的电池可以治愈自己。通过创新的冷蒸气刺激来治愈严重损坏的电池。一个用印刷传感器来监控心脏的数字印刷,泰勒制造的电池健康监控贴片的示例,并证明了呼吸。
(1) 维数 一般取值 1 或 2 ,当 时,要求数据量 在数千点以上,但 过大不能保证序列具有相同 的性质; 一定时,若 ,需要较大才能取得 较好的效果,但是太大会丢失序列的许多细节信 息。 Pincus [ 14 ] 研究认为 比 效果好,可使 序列的联合概率进行动态重构时提供更详细的信 息。 (2) 用来衡量时间序列相似性的大小。如果 选得太小,估计出的统计概率会不理想;若选得 太大,会丢失时间序列中很多细节,达不到预期的 效果。 Pincus [ 14 ] 通过对确定性和随机过程的理论分 析及其对计算和临床应用的研究,总结出取值为 ( 为原始序列的标准差 ) 能得出有效 的统计特征。 (3) 表示输入数据点,一般取值为 100 ~ 5000 。因此根据上述原则,本文取 , 。根据实验研究发现当 时,不同 状态的脑电信号的样本熵并无太大差异;当 时,不同状态的脑电信号的熵值有明显差异。 因此 取值为 100 。即用长度为 100 点,间隔为 4 点 的滑动窗计算 EEG 在运动想象期 (2 ~ 6 s) 的样本 熵序列,然后求该序列的均值作为该 EEG 的样本 熵。 ERS/ERD 现象主要出现在 C3 和 C4 电极对应的 感觉运动区上,例如,右手运动想象时可观测到 C3 电极对应的感觉运动区 ERD 现象,左手运动想 象时可观测到 C4 电极对应的感觉运动区 ERD 现
锂离子电池(LIB)在产品中具有核心作用,从便携式设备到电网的大规模储能,并继续进行快速开发。电动汽车的激增增强了对技术进步和新一代技术的关注。结构电池因其多功能性和轻质特性而受到了极大的关注。这些电池利用碳纤维将其机械强度与单个结构中的电池功能相结合,从而减少了总重量并增加了能量密度。类似于传统的LIB,结构电池包含负电极和正极电极,并在结构电池电解质(SBE)中加固。虽然已经对碳纤维作为负电极进行了广泛的研究,但与结构电池概念一致的正极电极的发展相对稀缺。