15.补充说明 Phil Gorney 和 Barbara Hennessey (NHTSA CORs) 16.摘要 本报告总结了对潜在锂离子 (Li-ion) 电池车辆安全问题的评估,为 NHTSA 提供信息,供其评估需求并确定未来对锂离子电池车辆的研究活动的优先顺序。此分析旨在帮助 NHTSA 识别可能需要考虑的潜在关键操作安全问题,并评估是否需要进一步测试以评估安全问题。本文档是该项目的综合最终报告,汇编和总结了关键背景信息和对开发结果的评估。本次调查的范围包括插电式混合动力汽车、混合动力汽车和电池电动汽车。本报告回顾了电池化学和机械设计和安全性、电池结构和设计、与电池功率相关的车辆系统、电池管理和控制系统、安全标准的文献,以及对采用锂离子电池系统进行推进的实验、概念、原型和生产规模车辆的调查。
双(氟磺酰基)酰亚胺阴离子 (FSI − )、AlCl 4 − 和 (BrCl) n − 已被研究作为石墨插层化合物 (GIC) 的插层剂。[3] 由于电池结构简单,DIB 已从 Li [4] 扩展到 Na、[5] K、[6] Mg、[7] Ca、[8] 和 Zn 离子 [9] 体系。与有机或离子液体电解质不同,具有高安全性和低成本特点的水系电解质近年来正在蓬勃发展。[3f,10] 尽管已经取得了重大进展,但 DIB 面临的关键挑战在于设备级的低能量密度。以前提高 DIB 能量密度的尝试主要依靠使用浓电解质 [6,11] 来降低非活性溶剂的重量比。然而,只有在超高浓度下才能动力学抑制正极侧的阳极腐蚀。当 DIB 充电过程中消耗掉大部分电解质时,稳定性问题仍然存在。金属阳极的镀层剥离效率也在很大程度上取决于浓缩电解质下形成的钝化界面。在之前的 DIB 原型中,总是需要过量的金属阳极和电解质。最近,开发了“无阳极”锂金属电池概念,使用非活性基质作为集流体,[12] 这比锂金属更安全、更方便,而且
(CALCE)马里兰大学,马里兰州帕克分校,美国 通讯作者。电话:+1 301 227 3985;电子邮件:christopher.hendricks@navy.mil;海军水面作战中心卡德罗克分部,9500 MacArthur Blvd,西贝塞斯达,马里兰州 20817,美国 摘要:锂离子电池的诊断和预测依靠电阻抗、容量和电压测量来推断电池的内部状态。电池结构的机械变化代表了电池状态的额外衡量标准,因为这些变化与整体电池健康状况有关。当锂离子电池充电和放电时,锂离子会从阳极和阴极插入或移除,这一过程称为嵌入和脱嵌。当锂离子嵌入和脱嵌时,它们会导致电极颗粒晶格发生变化,从而导致体积变化。这些体积变化会导致锂离子电池电极产生机械应力和应变,因此整个电池的厚度会随着充电和放电而变化。本文介绍了一项使用表面贴装应变计现场测量锂离子电池结构变化的研究,以及单元间应变响应差异的表征。然后使用神经网络建模结构来预测动态放电条件下电池的放电深度。
a型光子晶体具有更高的折射率对比度的周期性调制,从而带来了独特的光子带隙。在这项工作中,通过有限差分时间域(FDTD)方法研究了薄膜硅太阳能电池的光学性能。分布的bragg repetor(dbr)和纳米词被整合为背面反射器,该反射器认可硅太阳能电池中的光子模式。由于较高的光谱区域吸收有限,光捕获方案在太阳能电池中起关键作用。为此,使用具有数值模拟的光子射线理论来研究各种硅太阳能电池结构,以更好地吸收光吸收。此结果表明与参考细胞相比,DBR和纳米射击的结合能力,并产生高度相对增强的59%,而参考细胞认可了Fabry-Perot共振和光伏设备中的指导模式。这些结果显示出具有增强光吸收的薄膜硅太阳能电池的希望。k eywords dbr,纳米摩擦,硅,薄膜,fdtd f或citation dubey R.S.,Saravanan S.在薄纤维硅太阳能细胞中分布的bragg的反射和纳米旋转的影响。纳米系统:物理。化学。数学。,2022,13(2),220–226。
模块1:太阳能单元1半导体和连接的基础,P-N连接的I-V特征。太阳能电池结构,发光电流,光IV特性,太阳能电池参数,光谱响应和量子效率,串联电阻的影响和分流电阻对太阳能电池I-V特性的影响,温度和光强度的影响,阴影的影响,阴影的影响,损失,太阳能细胞中的损失。模块2:半导体中太阳能Cell-2生成重组的基本面; Shockley,阅读和大厅表达;表面和界面重组; Schockley-Queissser效率模块的极限-3:硅太阳能电池的生产,丝网印刷太阳能电池,掩埋的接触太阳能电池,高效率太阳能电池,后方接触太阳能电池。模块4:太阳能电池生产线硅源材料,晶片,清洁,纹理,扩散,等离子体隔离,抗反射涂层,屏幕上打印的前后触点,测试和模块制造模块5:测试和测量量的测试和测量量,测量太阳能电池效率,外部量子效率,IM量度,IM量度(EQE),i QE效率(EQE),EQE,EQE效率,EQE效率,EQE效率,EQE效率,EQE效率,EQE效率,EQE效率(EQE)量子效率分析,终生测量
摘要:结构电池正在引起人们的关注,并且可以在设计无排放的轻型防御和运输系统中发挥重要作用,例如飞机,无人驾驶汽车,电动汽车,公共交通,垂直起飞和着陆(VTOL) - 城市空中交通。这种综合功能的方法有助于总体质量减少,高性能和增强的车辆宽敞。目前的工作着重于开发和表征多功能结构钠电池电池组件,即使用高强度 - 强度的结构电解质(SE),该结构电解质(SE)通过在基于薄薄的(氧化乙烯)基于基于的乙二醇(氧化乙烯)的复合材料电解质层之间制备。结构电解质的电化学和机械特性表现出多功能性能,拉伸强度为40.9 MPa,离子电导率为1.02×10 - 4 s cm-1 60°C时在60°C时在60°C下使用0至4.5 v的电极式插入。 (CFS)针对结构电解质,其高抗拉力强度为91.3 MPa。制造的结构电池CF || SE || NA提供的典型能量密度为23 WH kg -1,并执行500个周期,同时保持80%的容量直至225个周期。在这项初步工作中对钠结构电池结构进行的研究表明,钠离子在中间模型型碳纤维电极中的插入显示,显示了具有出色的循环稳定性和结构强度的多功能性能,并为当前结构电池设计提供了替代路径。关键字:结构性钠电池,结构能量存储,多功能材料,碳纤维电极,多功能功率复合材料
摘要:光伏 (PV) 技术取得了显著进步,彻底改变了太阳能发电。本文全面概述了 PV 技术的最新发展,重点介绍了其效率、价格和可及性的提高。讨论首先介绍 PV 技术,解释其在太阳能发电中的作用。然后,深入探讨通过新材料、电池结构和制造技术实现的效率改进,强调它们对性能和成本效益的影响。本文探讨了新兴的 PV 技术,包括钙钛矿、串联和有机太阳能电池,讨论了它们在效率、稳定性和可扩展性方面的潜在优势、挑战和进展。研究了卷对卷印刷和薄膜沉积等创新制造技术对可扩展性和降低成本的贡献。讨论了储能技术与太阳能光伏系统的集成,重点介绍了电池和能源管理系统的进步。回顾了太阳能跟踪系统和聚光器技术在优化太阳能捕获方面的优势。本文探讨了涵盖光伏系统制造、运行和处置的环境考虑因素,以及通过回收计划和环保材料减轻其影响的努力。本文还研究了推动太阳能光伏应用的经济和政策因素,包括成本趋势、政府激励措施和政策框架。最后,本文讨论了未来的挑战,例如提高稳定性、降低成本和增强电网整合,同时介绍了正在进行的研究和光伏技术进一步发展的未来前景。这一全面概述阐明了光伏技术所取得的进展以及塑造太阳能发电未来的潜力。索引词:效率改进、储能集成、制造创新、光伏技术。1 简介 1.1 概述全球对能源,尤其是电能的需求随着时间的推移而不断扩大 [1]。能源被认为是创造财富的主要动力,也是任何国家经济发展和公民生活水平的重要因素 [2]。尽管石油基能源仍然丰富,但全球生态问题一直在强烈鼓励可再生能源。在其他可再生能源中,太阳能,特别是光伏能源是最有前景的
地下设施中锂离子电池技术的火灾风险和危害分析:文献综述 Sean Meehan 报告 5674 ISRN:LUTVDG/TVBB—5674--SE 页数:103 插图:19 关键词 锂离子电池、危害、风险、热失控、检测、防火 摘要 过去几十年来,锂离子电池 (LIB) 市场呈指数级增长,因为这种高能存储技术已应用于几乎所有行业。欧洲核子研究组织 (CERN) 有兴趣在其地下网络中实施这项技术,本文献综述旨在帮助解决火灾和安全问题。本综述分为四个部分。本综述的第一部分介绍了有关 LIB 的基本背景信息、内部组件、电池结构、电池化学以及对 LIBS 不同安装级别的层次理解。本综述的第二部分介绍了火灾风险和危害分析。分析 LIB 时的关键安全考虑因素是防止热失控事件。报告的这一部分定义了可能导致热失控事件的滥用来源(热、机械和电气滥用),以及 LIB 接近热失控时的一般内部分解阶段。关注热失控非常重要,因为当 LIB 电池进入热失控时,受损电池内部产生的热量超过了受损电池周围的冷却效果。内部放热反应可能是这种不平衡的热能传递的结果,导致一种或多种火灾和安全隐患(即有毒和易燃气体生成、火灾、爆炸、喷射火焰/燃烧弹、电气和重燃)。报告的这一部分还详细介绍了影响每种风险和危险的严重程度和概率的因素,以更好地解决事故准备问题。第三部分采用了第二部分中的火灾风险和危险分析,将其应用于 CERN 的隧道设施,并回顾了当前的火灾和危险检测、预防、缓解、抑制和灭火技术。本部分总结了关于在 CERN 地下设施内实施所审查技术的关键建议。本报告的第四部分首先确定了影响本次审查的当前研究差距,最后总结了本次文献审查的结果。© 版权所有:消防安全工程,隆德大学,隆德 2022。
2021年8月5日,美国政府宣布了到2030年的50%电动汽车销售目标。11接下来是2021年12月13日的EV收费计划的公告,该计划的目的是在2030年之前在美国安装500,000个充电器。12以同样的方式,欧洲委员会提出了欧盟(EU)范围范围内的CO 2减少新乘用车和货车的排放目标,到2035年为零排放。13然而,独立于政府政策和激励措施,预计电动汽车市场将在未来20年内飙升,根据伦敦的彭博社(BNEF)咨询公司的数据,全球新乘客销售的70%将于2040年发电。14,15因此,对电动电气电池的需求以及对电池材料的需求也将增加,甚至会进一步提高原始金属的供应,这是电动电池的关键组件。电动汽车电池或电动汽车电池组由几个电池模块组成,并包含电池管理系统(BMS),冷却系统以及其他控制和保护系统。电池模块由各种电池电池组成。电池结构每个电池电池都有两个电极(一个阳极,一个阴极),一个电解质,可为离子在电极之间流动的介质和一个防止电极相互接触的分离器。电池充电时,离子从阴极通过电解质和分离器流动到阳极。大多数电动汽车由于其高能量密度而使用锂离子(锂离子)电池,因此可以具有很高的电压和电荷存储,每单位质量和单位体积。当电池排放(为电动汽车驱动电动车辆)时,离子以相反的方向流动,从阳极通过电解质和分离器到阴极,迫使电子通过外部电路,从而产生了电流的电流。通常,锂离子电池在阳极上使用碳石墨和某种类型的锂离子金属氧化物晶体,例如阴极上的锂镍钴氧化铝(Linicoalo 2)。li-ion电池中使用的关键金属是锂,钴,镍,锰,铜和铝。阴极是定义电动电池性能的限制因素。li-ion电池阴极由一层薄层的微尺度晶体组成,这些晶体含有负电荷离子(O 2 - ),以及阳性电荷锂(Li +)以及其他金属的混合物,即镍(Ni),锰(Ni),锰(MN)和cobalt(CO)。使用各种过渡金属氧化物晶体(例如锂
卵子研究杂志。20,编号1,1月至2024年2月,第1页。 75-84 GAAS 1-X P X /SI 1-Y GE Y /GE三重连接太阳能电池的模拟和优化A. < /div>B. Azzououm B,A。Aissat A,B,C *,J。P. Vilcot C A艾哈迈德·德拉亚(Ahmed Draya),阿德拉尔(Adrar),阿尔及利亚B技术学院,Blida.1。Poincare Avenue,60069,59652 ASCQ的Villeneuve,法国本文着重研究和模拟GAAS 1-X P X /SI 1-Y GE Y /GE Y /GE三连接太阳能电池结构。首先,已经研究了与SIGE层相关的应变和带隙能。最佳锗浓度为0.88,应变约0.45%。然后,对上层GAAS 1-X P X /Si 0.12 GE 0.88的应变和带隙能的磷光浓度效应进行了优化。在室温下,最佳输出参数达到J SC = 34.41ma/cm 2,V OC = 1.27V,FF = 88.42%,η= 38.45%,吸收厚度为4.5µm,x = 0.47,菌株的菌株不超过1.5%。这项研究使我们能够设计高效,低成本的3J太阳能电池。(2023年10月23日收到; 2024年1月13日接受)关键字:半导体,效率,三连接,太阳能电池,光伏1.引言提高太阳能电池的效率会导致瓦特峰成本的降低[1]。在提供提高效率的技术中,我们发现了多期太阳能电池。但是,这些配置的制造成本仍然昂贵。后者基于一组具有不同带隙能的半导体材料的堆叠,该布置旨在吸收太阳光谱的最大值[2]。实际上,基于III-V化合物材料的多期太阳能电池提高了效率,并且似乎是光伏应用的未来。越来越多,它们已成为最前瞻性的太阳能技术[3,4]。降低成本所采用的技术之一是使用硅底物。因此,单层生长的GAASP/SI细胞可能是为空间应用提供低成本和高效率太阳能的合适候选者。,尽管在实验中众所周知,由于晶格不匹配高和热膨胀系数的巨大差异,很难用硅生长III-V材料[5-8] [5-8]。一种有希望的方法来克服这些限制并提高IIII-V 3J 3J太阳能细胞的效率,而不是使用Dermanium元素,而不是使用底层硅元素。锗的特征是直接带隙能在300K时为0.66 eV,因此吸收边缘比Si陡峭,SI陡峭,太阳辐照度光谱和低成本材料的光谱重叠更大。此外,锗元素可以与晶格匹配与III-V材料一起生长。这种优势使其成为吸收低能光子的有前途的材料[9,10]。由于这些最后的原因,在目前的工作中,锗被用作底部细胞。Fadaly等。此外,如[12]中报道,详细阐述了实验结构GAA 0.79 p 0.21 /si 0.18 ge 0.82双连接太阳能电池。将SIGE作为IIII-V顶部太阳能电池和底部电池之间的缓冲层的整合可以减少III-V核的位错界面,并提供高质量的底部太阳能电池。[11]证明了Si 1-ge Y合金的计算寿命接近III – V组半导体的寿命,因为从理论上讲,它们可以结合直接的带隙,波长态度和强烈的光学转变[11-13]。为了增强其表演的目标,三连接是 *通讯作者:sakre23@yahoo.fr https://doi.org/10.15251/jor.2024.201.75