运输业是温室气体排放的重要来源,推动了向电动汽车的转变。然而,由于需要重型电池组,电动汽车的续航里程有限。减少这种重量的一种方法是通过多功能材料,例如层压结构电池 (SB),它将结构完整性与能量存储结合在一起。层压 SB 由嵌入多功能聚合物基质(称为结构电解质)的碳纤维组成。在这里,碳纤维提供结构支撑、充当电极和集电器,而结构电解质则实现离子传导和机械负载传递。本论文探讨了不同的结构电解质成分和加工条件如何影响多功能特性,重点是将它们集成到层压 SB 中。该研究证明了热引发聚合诱导相分离的有效性,可生产具有双连续聚合物-液体电解质(即结构电解质)的全电池层压 SB。这些电解质具有影响离子电导率和储能模量的多种形态,呈现出更安全、更环保的配方,并具有足够的结构电极性能。长期研究表明,结构电解质配方对结构电极性能有影响,以及在重复充电/放电下纤维基质粘附性会受到怎样的影响。最后,我们展示了一种最先进的 SB,在两个电极中都使用了纤维,实现了能量密度和机械性能之间的完美平衡。这项工作为 SB 技术的未来发展奠定了基础,确定了增强多功能性能的挑战和机遇。
引言锂离子电池因其出色的能量密度、工作电压、循环寿命和自放电率而成为便携式电子设备的首选。为了提高性能和安全性,开发用于电动/混合动力汽车和储能系统的创新型电池组件至关重要 [1]。目前,大多数商用锂离子电池使用微孔聚烯烃膜作为隔膜,因为它们具有电化学稳定性和机械强度。然而,这些膜具有孔隙率低和电解质润湿性差等局限性,这会对电池的性能产生负面影响。此外,微孔聚烯烃膜在高温下表现出高热收缩率,这引发了安全问题 [2-4]。*通讯作者。电子邮件:m.javaheri@merc.ac.ir
在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。
推理 11:30 – 12:10 Daniel Brandell 教授(乌普萨拉大学) 使用 AI 发现氧化还原稳定的有机电池电极 12:10 – 13:30 午餐 全体会议 2(主席:Masahiro Yoshizawa-Fujita) 13:30 – 14:10 Teppei Yamada 教授(东京大学) 相变在电化学热电转换中的应用 14:10 – 14:50 Takahiro Ichikawa 教授(东京农工大学) 基于陀螺仪设计先进质子导电电解质
本期刊文章的自构建后版本可在Linköping大学机构存储库(DIVA)上获得:https://urn.kb.se/resolve?urn = urn= urn= urnt:se:se:se:se:liu:diva-206387 N.B. N.B.:引用这项工作时,请引用原始出版物。Padinhare Cholakkal,H.,Tu,D.,Fabiano,S。(2024),神经形态感知的有机电化学神经元,自然电子,7(7),525-536。 https://doi.org/10.1038/s41928-024-01200-5
Zn/MNO 2电池由双重沉积反应驱动,是在水性系统中实现高能量密度的突出途径。引入最初的双电极(阳极/阴极)构型可以将能量密度进一步提高到200 WH kg -1以上,但由于Zn/MNO 2沉积和剥离的可逆性差而导致的循环寿命有限。从材料合成中的软模板策略中汲取灵感,在这里,我们将这种方法应用于电沉积和剥离,并设计原位形成的液晶相间。通过仅将0.1 mM的表面活性剂分子掺入电解质中来实现,这可以诱导有利的C轴向取向沉积六边形Zn和MNO 2。这种增强后随后增加了沉积/剥离可逆性,并促进了双电极电池的循环寿命,在〜950周期后实现了80%的容量保留。这种液晶相间化学也有很大的希望,可以在其他晶体系统中调节沉积,为下一代高能密度和基于水性化学的长期储能打开了令人兴奋的研究方向。
B'Abstract:磷酸锂(LFP)/石墨蝙蝠长期以来一直占据了能源电池市场的主导,预计将成为全球电池电池市场中的主要技术。但是,LFP/石墨电池的快速充电能力和低温性能严重阻碍了它们的进一步扩散。这些局限性与界面锂(LI)-OION运输密切相关。在这里,我们报告了一种基于宽的酯基电解质,该电解质具有高离子的有效性,快速的界面动力学和出色的膜形成能力,通过调节Li Salt的阴离子化学。通过采用三电极系统和松弛时间技术的分布来定量地揭示电池的界面屏障。还系统地研究了所提出的电解质在防止LI 0电镀和持续均匀和稳定的相互作用中的优势作用。LFP/石墨细胞在80 \ XC2 \ XB0 C至80 \ XC2 \ XB0 C的超速温度范围内表现出可再生能力,并且在没有寿命的情况下出色的快速充电能力。特别是,实用的LFP/石墨袋细胞在1200个循环后(2 C)(2 C)和10分钟电量在25 \ XC2 \ XB0 C时达到89%(5 c),即使在80 \ xc2 \ xb0 C.'\ xc2 \ xb0 C \ xb0 C \ xb0 C上,可实现80.2%的可靠性。
开发环保电源生产技术。开发由竹,石灰石和姜黄制成的发电厂,以增加电解质溶液中电子的跳跃。这项研究旨在揭示姜黄作为从竹子和石灰石制造电解质溶液的催化剂的作用。这项研究的初始阶段始于高能量铣削(HEM)过程,将竹材料的大小降低到纳米尺寸。此外,竹子和石灰石溶解在水中,比为1:1。所使用的电极是铝和铜。姜黄用作催化剂,并增加原子数。比较竹子,石灰与姜黄1:1:1。石灰石通过激活偶极力并具有结晶特性,溶解在离子中。测试结果表明,与姜黄混合之前,由竹子和石灰石材料产生的电压为508 mV。此外,姜黄的添加产生的电压为1631 mV。
现任BTMS团队:安德鲁·梅恩茨(Andrew Meintz),布莱恩·珀杜(Brian Perdue),埃里克·杜菲克(Eric Dufek),杰克·德佩(Jack Deppe),安德鲁·詹森(Jack Deppe),安德鲁·詹森(Andrew Jansen),约翰·法雷尔(John Farrell),坎德勒·史密斯(Kandler Smith),凯文·格林(Kevin Gering),马修·凯瑟(Matthew Keyser),史蒂夫·特拉斯克(Steve Trask Dunlop,Matthew Shirk,Paul Gasper,Richard Carlson,John Kisacikoglu,Ed Watt,Ryan Tancin,Bertrand Tremolet de Villers,Noah Schorr,Katie Harrison,Anthony Burrell
硫化聚丙烯腈 (SPAN) 因其高容量、延长的循环寿命并且不含昂贵的过渡金属,最近成为高能锂 (Li) 金属电池的有前途的正极。由于锂金属和 SPAN 的高容量导致电极重量相对较小,因此 Li/SPAN 电池的重量和比能量密度对电解质重量特别敏感,凸显了最小化电解质密度的重要性。此外,锂金属阳极和 SPAN 阴极的大体积变化需要富含无机的界面相,以保证在长循环期间的完整性和保护性。这项工作通过电解质设计解决了这些关键方面,其中轻质二丁基醚 (DBE) 用作浓缩锂双(氟磺酰基)酰亚胺 (LiFSI)-三乙基磷酸 (TEP) 溶液的稀释剂。设计的电解质(d = 1.04 g mL − 1)比传统的局部高浓度电解质(LHCE)轻 40%–50%,从而在电池层面上带来 12%–20% 的额外能量密度。此外,DBE 的使用引入了显著的溶剂-稀释剂亲和力,从而产生了独特的溶剂化结构,增强了形成有利的阴离子衍生的富含无机物的界面相的能力,最大限度地减少了电解质消耗,并提高了电池的循环性能。该电解质还表现出低挥发性,并在热滥用下为锂金属负极和 SPAN 正极提供良好的保护。