版权所有©2025Stößlein和Kuypers。这是根据Creative Commons归属许可(CC BY)的条款分发的开放式文章。允许在其他论坛上使用,分发或复制,前提是原始作者和版权所有者被记住,并且根据公认的学术实践,请引用本期刊中的原始出版物。不允许使用,分发或复制,不符合这些条款。
近年来,电阻式存储器已成为电子领域的一项关键进步,在能源效率、可扩展性和非易失性方面具有众多优势 [1]。这些存储器以其独特的电阻开关行为为特征,非常适合各种应用,从高密度数据存储到神经形态计算 [2]。它们与先进的半导体工艺的兼容性进一步增强了它们的潜力,使其能够无缝集成到现代电子电路中 [3]。电阻式存储器的一个特别有前途的途径在于将其集成在半导体制造的后端 (BEOL) 阶段 [4]。BEOL 集成涉及晶体管制造后发生的工艺,主要侧重于创建电气连接这些晶体管的互连。在此阶段集成电阻式存储器可实现紧凑、高效和高性能的架构,这对于数据存储和处理共置的内存计算应用至关重要 [5]。本文研究了使用化学机械抛光 (CMP) 工艺将基于 TiO x 的电阻式存储器集成到无源交叉阵列结构中的三种方法,重点是确定最佳集成技术。
众所周知,由于电子表面散射,传统金属(如铜)的电阻率在薄膜中会增加,从而限制了金属在纳米级电子器件中的性能。在这里,我们发现在相对较低的 400°C 温度下沉积的磷化铌 (NbP) 半金属中,随着薄膜厚度的降低,电阻率会异常降低。在厚度小于 5 纳米的薄膜中,室温电阻率(1.5 纳米厚的 NbP 约为 34 微欧姆厘米)比我们的块体 NbP 薄膜的电阻率低六倍,并且低于类似厚度的传统金属(通常约为 100 微欧姆厘米)。NbP 薄膜不是晶体,而是在非晶态基质内表现出局部纳米晶体、短程有序。我们的分析表明,较低的有效电阻率是由通过表面通道的传导以及薄膜厚度减小时的高表面载流子密度和足够好的迁移率引起的。这些结果和在此获得的基本见解可以实现超越传统金属限制的超薄、低电阻率纳米电子线。
超导是某些材料在冷却到临界温度以下时发生的一种现象,导致电阻完全消失 [1]。这种特殊特性使材料能够无损传输电力,从而产生了各种突破性的应用,如高速磁悬浮列车和高灵敏度磁共振成像设备 [2,3]。传统超导体被称为低温超导体 (LTS),最早是在 20 世纪初发现的,可在极低温度下工作,通常接近绝对零度。20 世纪后期高温超导体 (HTS) 的发现引起了科学家们的极大热情和猜测 [4]。与传统材料相比,HTS 材料在更高的温度下表现出超导特性,甚至超过了液氮的沸点。这为在更方便、更经济的冷却条件下实际使用提供了令人兴奋的可能性
激光表面结构是一种有效的技术,用于在统一接近或低于统一的铜表面具有二级电子产量(SEY)值。然而,最小化SEY的属性,例如中度深凹槽和重新沉积的纳米颗粒,可能导致不良后果,包括增加射频表面电阻。这项研究系统地检查了有关旨在消除重置吸附的颗粒的不同清洁程序的数据。连续清洁步骤后迭代使用各种分析技术,从而提供了对不断发展的表面特征的见解。收集的实验结果确定了微沟,凹槽方向以及相关颗粒对次级电子产率和表面电阻的明显影响。在凹槽中保持高颗粒物覆盖范围的同时露出波峰会导致SEY值和表面电阻的降低,这表明凹槽的尖端对表面电流密度的影响比凹槽深度更为重要。同时,凹槽中的纳米颗粒对SEY值具有比表面暴露的尖端更重要的影响。
抽象涂层是用于不同目的的纺织行业中广泛的技术,主要是在着色和功能表面上。石墨烯通常使用涂料技术应用于织物,以提供具有导热性或电导率等特性的织物。所有编织织物的结构都有峰值和山谷,由翘曲和纬线交织在一起。在散布石墨烯涂层时,将糊剂放在织物的间隙中,并且只有在涂层的高度足以连接沉积的不同区域时才产生导电颗粒之间的连接。本文分析了三种类型的缎面编织,三个交错系数(0.4、0.25、0.17)和两组纬纱(20和71.43 Tex)。对于1.5毫米的叶片间隙,纬纱计数的样品的电阻为20 tex且交错系数为0.4为534.33Ω,而对于IC = 0.25的0.25电阻高36.8%,对于IC = 0.17,此参数增加了249.3%。对于具有71.43的纬纱计数的样品,IC = 0.40的样品的电阻为1053Ω,对于IC = 0.25,此值升至33.9%,而对于IC = 0.17,电阻值总计增加了78.9%。对于连续性至关重要的涂层,并且需要保护需要保护外部因素的物质,这一发现可能是感兴趣的,对于需要保护的物质,可以将具有深层间隙的织物设计用于容纳所述产品。
Bourns ® 产品数据表中列出的特性和参数基于实验室条件,有关产品适用于某些应用类型的陈述基于 Bourns 对通用应用中典型要求的了解。Bourns ® 产品在用户应用中的特性和参数可能与数据表特性和参数不同,原因是 (i) Bourns ® 产品与用户应用中其他组件的组合,或 (ii) 用户应用本身的环境。Bourns ® 产品的特性和参数在不同应用中也可能存在差异,实际性能可能随时间而变化。用户应始终在其特定设备和应用中验证 Bourns ® 产品的实际性能,并自行判断在其设备或应用中设计额外的测试裕度,以补偿实验室条件和实际条件之间的差异。
Bourns ® 产品数据表中列出的特性和参数基于实验室条件,有关产品适用于某些应用类型的陈述基于 Bourns 对通用应用中典型要求的了解。Bourns ® 产品在用户应用中的特性和参数可能与数据表特性和参数不同,原因是 (i) Bourns ® 产品与用户应用中其他组件的组合,或 (ii) 用户应用本身的环境。Bourns ® 产品的特性和参数在不同应用中也可能存在差异,实际性能可能随时间而变化。用户应始终在其特定设备和应用中验证 Bourns ® 产品的实际性能,并自行判断在其设备或应用中设计额外的测试裕度,以补偿实验室条件和实际条件之间的差异。
可充电电池的通用电池内部阻力测试仪:电池内部电阻测试仪,用于测量可充电电池的内部电阻,电压和温度,例如铅酸电池和锂电池,以判断电池的健康状况。电容ESR参数的仪表(仅供参考)。此仪器使用AC 4末端测试方法来测量电池的内部电阻,该方法可以测量正确的测量值,而不会受到测试线,端子和电池电极之间的接触电阻的影响。同时,它还具有数据存储,数据访问,警报,自动关闭等功能。整个机器都是高级且美丽,范围广泛,高分辨率,方便的操作,易于携带,准确,可靠,稳定的性能,强大的抗干扰能力。这是一种必不可少的工具,用于电池生产,电池安装,设备生产,设备维护和其他场景。