a。CDK7底物(RNAP II)在用DMSO(对照)处理的HCT116细胞中或通过免疫印迹测量的指示化合物。b。通过免疫印迹在处理过的HCT 116细胞中癌基因C-MYC和DNA双链断裂标记H2AX的表达。C.细胞增殖(C -BRDU分析)和D,处理后的HCT 116细胞中的细胞凋亡分析(Annexin V/7AAD染色)。e。在用DMSO(对照)处理的MDA-MB-231(TNBC)细胞中,在MDA-MB-231(TNBC)细胞中的凋亡制造商(裂解的caspase 3和裂解PARP1)的表达表达或通过免疫印迹测量的指示化合物。
癌症治疗[8]。不良,BCl-2相关的死亡启动子,通过调节细胞周期进展,调节乳腺癌细胞的增殖和肿瘤进展,使乳腺癌细胞对化学疗法敏感[24,25]。SSX2相互作用蛋白(SSX2IP)来调节睾丸和恶性细胞中SSX2的活性[26]。许多研究报告说,SSX2IP作为急性髓样白血病相关的抗原是白血病的潜在免疫疗法靶标[27,28]。还推测SSX2IP在胃癌和肝癌的发展和转移中起重要作用[29]。Znf24起着乳腺癌和胃癌肿瘤发展的负调节剂[30,31]。Znf24也充当癌基因并促进了前列腺癌细胞的EMT [32]。但是,
1巴西圣保罗大学肿瘤学系2巴西圣保罗联邦大学甲状腺分子科学实验室生物科学系,巴西圣保罗联邦大学,巴西3,圣保罗系,巴西公共卫生学院,圣保罗教职员工,布拉西,蜂窝状学和开发学院。巴西圣保罗5号圣保罗大学生物化学系,巴西圣保罗大学化学研究所,6统计和应用系,巴西福特莱萨联邦大学,巴西Fortaleza联邦大学,肿瘤生物学生物学和癌基因遗传学医院实验室,巴西Araujo Jorge,巴西,巴西,医学院,医学院。生物医学和药品,巴西Goiânia
我们报告了一名33岁的南亚妇女的罕见案例,该妇女访问了分子病理学和基因组学部门,被诊断出患有甲状腺的高级,多焦点髓样癌后,被转诊为遗传性种系癌基因测试。遗传咨询表现出癌症的精致家族史。通过下一代测序对113个基因进行种系癌症测试,在RET基因C.1901G> C p.cys634ser(codOn10)中显示了致病性杂合杂合单核苷酸变异,并且在Brca c.213-13-13-13-13-13-13-13-13-13-13-13-13-13-13-13-13-13-13-13-13-13-1。基于5PS,例如参与,心理支持和风险评估,预防和个性化的预测,进一步以精密医学(PM)范式进行了进一步管理。
摘要。背景/目标:雌激素受体α(ERα)拮抗剂是ERα阳性乳腺癌的最常见治疗方法。但是,代偿信号传导有助于对ERα拮抗剂的抗性。因此,为了探索靶向补偿信号传导的潜在药物,我们筛选了多种靶标抑制剂进行乳腺癌治疗。材料和方法:我们试图建立一个基于结构的虚拟筛选模型,该模型可以通过整体细胞存活分析来找到潜在的化合物并测定这些药物的抗癌能力。通过免疫印迹测量下游补偿性磷酸化信号传导。结果:Hamamelitannin和Glucocheirolin均为ERα,磷酸肌醇3-激酶(PI3K)和KRAS原始癌基因,GTPase(KRAS)(KRAS)的命名,它们对雌激素和表皮生长因子触发的增殖具有活性。
通过一系列历史事故,我的职业生涯始于分子生物学的撤销。分子生物学的诱惑使我吸引了肿瘤病毒作为细胞的Nu-Cleic酸代谢的实验模型。这些病毒引起癌症是偶然的事实,但最终导致对癌症发病机理的兴趣,从而利用它们了解细胞转化的机制。这使得可以测试源自细胞基因的介导的细胞转化,并且癌细胞行为是由这些基因突变等位基因的作用驱动的。在1979年,我们表明已经通过3-甲基胆碱转化的细胞带有突变的致癌等位基因。这项工作进行了进展,因此到1982年,我的研究小组和其他研究表明人膀胱癌细胞携带了点突变的RAS癌基因,从而直接证明了癌症发病机理的突变理论。
世界人口的老化对理解衰老过程,制定策略和干预措施以延长健康寿命的兴趣加剧了兴趣。细胞衰老,当细胞在体外细胞增殖后或对绝对应激或癌基因表达反应后不可逆生长时(1,2)在AG的表型和年龄相关疾病中起作用(1)。越来越多的证据表明,衰老细胞也具有必不可少的生理功能,例如在肿瘤抑制,发育,伤口愈合,组织重塑,再生和脉管系统中。这就提出了有关衰老细胞类型之间的相似性和差异以及它们在体内平衡和病理学中的作用的重要问题,并在治疗方面靶向它们时会产生更多的挑战。
脑膜瘤对手术或辐照的脑膜瘤的客观化学治疗选择在很大程度上是未知的。Human端粒酶逆转录酶(HTERT)启动子甲基化具有随后的TERT表达和端粒酶活性,在大多数高级脑膜瘤中都发现了肿瘤发生的关键特征。因此,作者研究了脱甲基化剂去甲甲他蛋白(5-Aza-2-脱氧胞苷)对脑膜瘤细胞中存活和DNA甲基化的影响。方法在两种良性(HBL-52和Ben-Men 1)和一种恶性(Iomm-Lee)脑膜瘤细胞系中,研究了在与Decitabine与Decitabine孵育之前和孵育后,研究了在与Decitabine孵育之前和孵育培养之前研究的。与DNA甲基化分析一起探索了解替滨对DNA甲基化的整体作用。在Iomm-Lee和Ben-Men 1中发现了高水平的TERT表达,端粒酶活性和HTERT启动子甲基化,但在HBL-52细胞中没有发现。decitabine诱导剂量依赖性的显着降低,并在Iomm-Lee中与剂量从1至10 µm孵育后,在HBL-52或Ben-Men 1细胞中诱导了剂量依赖性降低。然而,Iomm-Lee细胞的作用与TERT表达,端粒酶活性或HTERT启动子甲基化无关。全基因组甲基化分析表明,在德替替替替替替替象敏感的Iomm-Lee中药物给药后,14个DNA区域的脱甲基化明显,但在耐替替替他的HBL-52细胞中却没有。结论决定滨在高级脑膜瘤细胞系中降低了增殖和生存能力。差异甲基化区域的11个基因的启动子区域,包括几种癌基因和肿瘤抑制基因,这些基因尚未在脑膜瘤中描述。取代滨的作用是独立的,但与不同肿瘤抑制基因和癌基因的启动子的DNA甲基化变化有关。
甲状腺癌是最常见的内分泌癌。甲状腺癌新生物标志物的发现大大提高了对甲状腺癌分子发病机制的理解,从而为甲状腺癌患者提供更加个性化的治疗。大多数最近发现的靶向疗法抑制了甲状腺癌发生和进展中已知的致癌机制,例如 MAPK 通路、PI3K/Akt-mTOR 通路或 VEGF。尽管分子检测取得了重大进展,并发现了新的有希望的治疗方法,但对晚期和转移性碘难治性甲状腺癌的有效治疗方法仍然缺乏。在这里,我们旨在总结目前对甲状腺癌基因改变和失调通路的理解,并讨论具有良好抗肿瘤活性和临床益处的晚期甲状腺癌的最新靶向疗法和免疫疗法。