腺苷信号代表了调节肿瘤免疫的关键代谢途径,并由肿瘤采用以促进其生长并损害免疫力。腺苷是在高肿瘤微环境(TME)水平上响应缺氧而产生的。这是一种广泛的免疫抑制代谢产物,可调节先天和适应性免疫反应。抑制腺苷生成酶是通过增强T细胞和NK细胞功能并抑制髓样细胞和其他免疫调节细胞的促肿瘤作用来促进抗肿瘤免疫力的一种策略。对靶向腺苷信号各个方面的免疫治疗性的研究已经在进行中,已经开发了几种抵抗腺苷轴的试剂。临床前研究表明,仅需要进行更多的研究来了解它们作为治疗选择的可行性,但需要进行更多的抗肿瘤活性。细胞外腺苷通过四个已知的G蛋白偶联腺苷受体之一激活细胞途径:A 1,A 2A,A 2B和A 3。A 2A受体是在T细胞和天然杀伤T(NKT)细胞,单核细胞,巨噬细胞,DCS和天然杀伤(NK)细胞上表达的高功能受体。相比之下,A 2B受体是相对较低的非实身受体,最多由巨噬细胞和DC表达(1)。许多有利于腺苷生成组织破坏,缺氧,核苷酸酶表达和炎症的因素,这是TME的高度特征。腺苷是一种免疫抑制代谢产物,在TME内部高水平产生。因此,在靶向肿瘤相关腺苷信号的各个方面以增强对恶性肿瘤的免疫反应(2)方面已经完成了显着工作(2)。缺氧,细胞更新增加以及CD39和CD73的表达是腺苷产生的基本因素。癌症免疫疗法中的腺苷途径阻断对癌症患者至关重要。靶向腺苷途径通常集中在免疫抑制腺苷的两个主要方面,这是通过(1)通过靶向CD73和CD39抑制TME中腺苷的产生,以及(2)通过靶向A 2A和2B受体(3)的腺苷信号的阻断。
癌症干细胞(CSC)与上皮 - 间质转变(EMT)之间的联系对于癌症的起步,进展,转移和耐药性至关重要,这使其成为癌症治疗的焦点。本综述提供了CSC和EMT之间关联和调节途径的全景,强调了它们在癌症中的重要性。彻底探索了下划线EMT的分子机制,包括关键转录因子和信号通路的参与。此外,在本综述中进一步研究了CSC和EMT在肿瘤生物学和耐药性中的作用。探索了CSCS-EMT相互作用的临床意义,包括使用先进的研究方法鉴定间充质状态CSC亚群,并开发了靶向疗法,例如抑制剂和组合治疗。总的来说,了解EMT与CSC之间的相互关系具有巨大的潜力,可以告知个性化疗法的发展并最终改善患者的结果。
摘要:(1)背景:铁凋亡是一种与细胞凋亡的细胞死亡程序有关,涉及包括癌症在内的许多疾病。新兴证据表明,铁铁作用是癌症治疗的有前途的途径,但是缺乏对铁腐病调节的机械理解和缺乏对螺旋病诱导剂敏感的生物标志物的缺乏,这显着妨碍了基于肥大的疗法的实用性。(2)方法:我们通过将小分子化合物的敏感性(n = 481)与固体癌细胞系的转录组(n = 659)相关联,进行了集成数据集分析,以识别候选药物,并具有诱导肥大症的潜力。通过询问泛溶细胞的转录组数据来审问螺栓诱导剂(n = 7)的药物效应(n = 7)的药物效应来定义可推广的基因信号。 (3)结果:我们第一次报告了诱导泛胞菌和抗抗精神病患者的可推广基因特征的药物化合物的全面鉴定。 我们进一步揭示了小细胞肺癌(SCLC)和异位酸脱氢酶(IDH1 / 2) - 突变剂脑肿瘤显示出促肥力基因签名的富集,这表明SCLC和IDH肿瘤具有独特的脆弱性,对纤毛诱导者的肿瘤具有独特的脆弱性。 最后,我们证明了靶向I类组蛋白脱乙酰基酶(HDAC)显着增强了肺癌细胞中Erastin引起的肌蛋白(一种诱导甲状腺毒性诱导剂)引起的甲状腺毒细胞死亡,揭示了先前低调的HDAC在甲状腺毒作用调控中的作用不足。可推广的基因信号。(3)结果:我们第一次报告了诱导泛胞菌和抗抗精神病患者的可推广基因特征的药物化合物的全面鉴定。我们进一步揭示了小细胞肺癌(SCLC)和异位酸脱氢酶(IDH1 / 2) - 突变剂脑肿瘤显示出促肥力基因签名的富集,这表明SCLC和IDH肿瘤具有独特的脆弱性,对纤毛诱导者的肿瘤具有独特的脆弱性。最后,我们证明了靶向I类组蛋白脱乙酰基酶(HDAC)显着增强了肺癌细胞中Erastin引起的肌蛋白(一种诱导甲状腺毒性诱导剂)引起的甲状腺毒细胞死亡,揭示了先前低调的HDAC在甲状腺毒作用调控中的作用不足。(4)结论:我们的工作揭示了调节癌症中铁凋亡的新型药物化合物和基因网络,从而阐明了铁凋亡的机制,并可能促进生物标志物引导的基于铁毒性治疗的层。
癌症仍然是全球死亡的主要原因之一。尽管药物治疗的进展,但当前的治疗策略,包括放疗,化学疗法,靶向治疗和手术切除,但并未显着降低癌症的全球发病率和死亡率。肿瘤学家由于与标准疗法相关的不利副作用而制定有效的治疗计划时面临着巨大的挑战。因此,迫切需要更有效且耐受良好的癌症治疗方法。姜黄素是一种天然发生的化合物,它因其多种生物学特性而引起了显着关注。临床前研究和临床试验都强调了姜黄素在癌症治疗中的潜力,证明了其通过多个细胞和分子途径抑制各种癌细胞类型的增殖的能力。本文研究了抗肿瘤特性,以及包括姜黄素靶向的细胞信号通路,包括与癌症发育有关的细胞信号通路,并探讨了将姜黄素作为一种可行的抗癌治疗的挑战。
胶原蛋白是哺乳动物中最丰富的蛋白质,广泛表达于组织器官和肿瘤细胞外基质中。肿瘤胶原主要聚集在肿瘤基质或肿瘤血管内皮下,由于肿瘤血管的结构破碎,肿瘤胶原暴露在外。通过血管的通透性和滞留性(EPR)效应,胶原结合大分子容易与肿瘤胶原结合并在肿瘤内聚集,使得肿瘤胶原成为潜在的肿瘤特异性靶点。近年来,大量研究证实,靶向肿瘤细胞外基质(TEM)内的胶原可增强免疫治疗药物在肿瘤处的蓄积和滞留,显著提高其抗肿瘤疗效,并避免严重的不良反应。本文对已知的胶原结合结构域(CBD)或蛋白(CBP)、其作用机制及其在肿瘤靶向免疫治疗中的应用进行综述,并展望未来的发展。
纽约 - 食道癌1(NY-ESO-1)属于癌症抗原(CTA)家族,并被鉴定为家庭成员中最免疫原性肿瘤抗原(TAA)之一。鉴于其能够触发自发的体液和细胞免疫反应以及受限的表达,NY-ESO-1已成为癌症免疫疗法最有希望的靶标之一。癌症疫苗是癌症免疫疗法的重要元素,它通过主要的组织相容性复合物II(MHC-II)(MHC-II)和CD8 + T细胞通过主要的组织相容性I(MHC-I(MHC-I),通过主要的组织相容性复合物II(MHC-II)提出了TAA蛋白,肽和抗原性表位的外源性来源。这些机制进一步增强了对由细胞毒性T淋巴细胞(CTL)和辅助T细胞介导的TAA的免疫反应。ny-Eso-1的癌症疫苗有近二十年的历史,从2003年进行的第一次临床试验开始。目前针对NY-ESO-1的癌症疫苗具有多种类型,包括基于树突状细胞(DC)疫苗,肽疫苗,蛋白质疫苗,病毒疫苗,细菌疫苗,治疗性全肿瘤疫苗,全肿瘤细胞疫苗,DNA疫苗和MRNA疫苗,并促进了他们所在的效果,并构成了效率,并构成了这些疫苗。在这里,我们总结了针对NY-ESO-1进行固体癌症治疗的癌症疫苗的当前进展,旨在为将来的研究提供观点。
烟酰胺腺嘌呤二核苷酸(NAD +)对于哺乳动物细胞中的各种氧化还原反应是必不可少的,尤其是在能量生产过程中。恶性细胞增加了NAD +生物合成酶的表达水平,用于快速增殖和生物量产生。此外,安装证明表明,降解酶(NADase)在创建免疫抑制性肿瘤微环境(TME)方面发挥了作用。有趣的是,抑制NAD +合成和靶向NADase都对癌症治疗具有积极影响。在这里,我们总结了NAD +产生增加的有害结果,NAD +代谢酶在创建免疫抑制性TME方面的功能,并讨论NAD +合成和靶向NADase的NAD +合成和疗法的抑制剂的进度和临床转化潜力。
人工智能方法越来越多地用于肿瘤基因组表征。该应用可以从肿瘤病理图像中识别特定的基因突变。人工智能被用于加速药物研发,预测针对癌症生长中重要特定分子的新药。
现在已广泛认识到,Ca2+代表了负责调节各种细胞过程(例如增殖,分化,迁移和死亡)的重要且普遍的Messenger(1)。此外,已经将钙信号畸变确定为有助于肿瘤发展和进展的参数之一。虽然多运动泛滥的研究已经通过强调多个致癌驱动因素和癌症标志来确定并提高了我们对癌症分子生物学的理解(2,3),但了解如何在肿瘤细胞中调节钙浓度仍然是一个有趣的挑战。实际上,研究表明,一方面,细胞内Ca2+水平的失调与肿瘤的启动和进展有关,另一方面,Ca2+信号传导通过增殖,凋亡,凋亡,和免疫感染来调节肿瘤微环境(4)。这些多重作用使得无法精确地确定钙信号的功能障碍是肿瘤的原因还是其他致癌性变化的结果。因此,需要对CA2+泵,Ca2+依赖性激酶,交换器和通道(包括电压门控,CRAC,ORAI,ORAI,stim,MUC和TRP)进行进一步的研究,以抑制肿瘤的发展并增强抗癌免疫力。同意,Sala等。证明了由Ether A-Gò-Gò-Gò-与相关基因1(ERG1)的影响选择和淋巴细胞的分化途径介导的Ca2+水平的调节。迄今为止,几个发现强调了受通道调节的胞质Ca2+信号的作用,在刺激CD8+淋巴细胞和天然杀伤细胞的增殖和成熟中(5),在促进免疫细胞迁移和趋化性(6)中的作用(5),以及在促进免疫杀伤和物质杀伤(7)中的作用(6)。尤其是作者强调了ERG1活性在B和T细胞受体激活过程中实现Ca2+插入所必需的足够的电化学梯度的重要性。失调会导致CA2+信号的改变,该信号允许错误选择增殖的肿瘤淋巴样克隆。与这些结果一致,已证明在白血病中发现了ERG1的异常表达,并且与化学抗性和较差的预后有关(8)。Yang等人也强调了Ca2+水平对T效应淋巴细胞存活的重要性。谁描述了Ca2+进口到线粒体的基本作用,由
摘要:活性氧 (ROS) 主要由线粒体电子传递链和过氧化物酶体和内质网中的 NADPH 氧化酶产生。抗氧化防御通过解毒酶和分子清除剂(例如超氧化物歧化酶和谷胱甘肽)来抵消 ROS 的过量产生,以恢复氧化还原稳态。氧化还原景观的突变可诱发致癌作用,而 ROS 产生的增加可促进癌症发展。此外,癌细胞可以增加抗氧化剂的产生,从而对化疗或放疗产生耐药性。研究一直在开发针对癌症氧化还原景观的药物。例如,抑制氧化还原景观中的关键参与者旨在调节 ROS 的产生,以防止肿瘤发展或使癌细胞对放射治疗敏感。除了单个细胞的氧化还原景观外,替代策略还针对多细胞水平。细胞外囊泡(例如外泌体)对于缺氧肿瘤微环境的形成至关重要,因此被探索作为癌症治疗中的靶标和药物输送系统。本综述总结了当前癌症氧化还原领域的药物和实验干预措施。
