将计算工作负载从云转移到边缘设备可以显着证明推理和学习的总体延迟。相反,此范式偏移加剧了边缘设备上的资源约束。受神经过程启发的神经形态计算体系结构是边缘设备的自然基板。他们是共同存在的记忆,原位训练,能量效率,高记忆密度和计算能力,以较小的形式。由于这些特征,在最近的过去,混合CMOS/MEMRistor神经形态计算系统迅速扩散。但是,这些系统中的大多数具有有限的可塑性,靶向空间或时间输入流,并且未在大规模的异质任务上证明。设计可扩展的神经形态系统存在关键的知识差距,该系统可以支持边缘设备上的时空输入流的混合可塑性。
研究文章:新研究| Sensory and Motor Systems Post-Movement Beta Synchronization Induced by Speed Effects IHI from Ipsilateral to Contralateral Motor Cortex https://doi.org/10.1523/ENEURO.0370-24.2025 Received: 26 August 2024 Revised: 3 February 2025 Accepted: 21 February 2025 Copyright © 2025 Zhang et al.这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
先前的研究表明,通过单侧手部运动增加某一大脑半球的活动水平有可能影响创造性表现。左手运动引起的右脑半球大脑更强烈的激活被认为可以促进创造性表现。这项研究的目的是通过加入更高级的运动任务来复制这些效果并扩展先前的发现。43 名右撇子参与者被要求分别用右手(n = 22)或左手(n = 21)运球。运球过程中,使用功能性近红外光谱(fNIRS)监测双侧感觉运动皮层的大脑活动。通过调查两组(左手运球与右手运球)并进行测量创造性表现(语言和图形发散思维任务)的前测/后测设计,检查了左半球和右半球激活对创造性表现的影响。结果表明,篮球运球无法调节创造性表现。然而,对运球过程中感觉运动皮层大脑激活模式的分析揭示出的结果与复杂运动任务期间大脑半球激活差异的结果基本一致。在右手运球时,左半球的皮质激活程度高于右半球,而左手运球时双侧皮质激活程度高于右手运球。线性判别分析的结果进一步表明,使用感觉运动活动数据可以实现较高的组分类准确率。虽然我们无法复制单侧手部运动对创造性表现的影响,但我们的结果揭示了高级运动过程中感觉运动大脑区域功能的新见解。
皮层电图 (ECoG) 是一种微创方法,在临床上经常用于绘制大脑致痫区域图并促进病变切除手术,并且在脑机接口应用中得到越来越多的探索。当前的设备存在局限性,需要在皮层表面覆盖率、空间电极分辨率、美观度和风险后果之间进行权衡,并且通常将映射技术的使用限制在手术室中。在这项工作中,我们报告了一种可扩展的技术,用于制造大面积软机器人电极阵列,并通过平方厘米的钻孔使用压力驱动的致动机制(称为外翻)将其部署在皮层上。可部署系统由多达六条预折叠的软腿组成,并使用水性加压溶液将其放置在皮层的硬膜下,并固定在小开颅边缘的基座上。每条腿都包含柔软的微加工电极和应变传感器,用于实时部署监控。在一项概念验证急性手术中,一个软机器人电极阵列被成功部署在一只小型猪的皮层上,以记录感觉皮层活动。这种软机器人神经技术为微创皮层手术和与运动和感觉缺陷等神经系统疾病相关的应用开辟了有希望的途径。
图 1. 用于优化每个参与者个性化分类器的分析程序。原始 EEG 数据经过频谱分析。计算 MEP 振幅并通过中值分割分为小 MEP 和大 MEP。之后,通过拟合 100 个不同的 lambda 值和 168 个不同的特征数的 LDA 分类器执行 5 倍交叉验证网格搜索,并按重要性顺序添加特征。然后,选择每个参与者表现最佳的交叉验证分类器,并使用交叉验证期间获得的每个预测类的真实 MEP 振幅计算预测的 MEP 振幅调制。对于每个参与者,在优化和分类循环中训练和测试 16,800 个分类器,这在标准笔记本电脑上需要约 4 分钟。
版权所有 © 2022 McCarty 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的署名。
摘要 体感皮层的微刺激可引发人工触觉感知,并可纳入双向脑机接口 (BCI) 以恢复受伤或患病后的功能。然而,人们对刺激参数本身如何影响感知知之甚少。在这里,我们通过植入两名颈脊髓损伤人类参与者体感皮层的微电极阵列进行刺激,并改变刺激幅度、频率和刺激序列持续时间。增加幅度和刺激序列持续时间会增加所有测试电极上的感知强度。令人惊讶的是,我们发现增加频率会在某些电极上引发更强烈的感知,但在其他电极上引发的感知强度较低。这些不同的频率-强度关系分为三组,它们在不同的刺激频率下也会引起不同的感知质量。相邻的电极位置更有可能属于同一组。这些结果支持了刺激频率直接控制触觉感知的想法,并且这些不同的感知可能与体感皮层的组织有关,这将有助于双向 BCI 刺激策略的原则性发展。
。CC-BY-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 2 月 8 日发布。;https://doi.org/10.1101/2021.02.08.430302 doi:bioRxiv 预印本
无干扰 主要任务在没有任何次要干扰的情况下完成。 背景噪音 受试者收听带有餐厅背景噪音的音轨,音量恒定。 计数音调 以可变的时间间隔随机向受试者呈现低、中、高频音调的哔哔声。指示受试者在整个试验过程中增加高哔哔声的次数,减去低哔哔声的次数,并大声计数值。 以三为单位倒数 研究人员生成一个随机的三位数,指示受试者从生成的数字开始大声以三为单位倒数。 随意交谈 向受试者提问(从不重复)以模仿正常对话。示例问题包括: 你的周末过得怎么样? 你昨天看了电影吗? 运动任务受试者 P1,轮椅操作:受试者的电动轮椅在试验期间关闭。受试者每 10 秒收到一次听觉提示,以改变她施加在下巴操纵杆上的力的方向。她在整个试验过程中都施加了力。方向从随机的起始方向(上、下、左、右)顺时针移动。
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。