。cc-by-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年2月23日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.02.17.637601 doi:Biorxiv Preprint
研究文章 | 系统/电路 猕猴在同侧和对侧伸手抓握过程中初级和运动前皮质局部场电位的差异调节 https://doi.org/10.1523/JNEUROSCI.1161-23.2024 收到日期:2023 年 6 月 23 日 修订日期:2024 年 4 月 2 日 接受日期:2024 年 4 月 3 日 版权所有 © 2024 Falaki 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的署名。
皮质脊髓神经途径对于运动控制和移动执行至关重要,在人类中,通常使用并发的电解质学(EEG)和肌电图(EMG)录音来研究它。但是,当前捕获这些记录之间高级和上下文连接性的方法具有重要的局限性。在这里,我们基于密度比的正交分解来介绍统计依赖估计量的新应用,以模拟皮质和肌肉振荡之间的关系。我们的方法通过学习特征值,特征函数和密度比的投影空间从信号实现的实现,解决皮质 - 肌肉连接性皮质的可解释性,可伸缩性和局部时间依赖性来扩展。我们通过实验证明,从皮质肌肉连通性中学到的本征函数可以准确地对运动和受试者进行分类。此外,它们揭示了确认运动过程中特定脑电图通道激活的通道和时间依赖性。我们的代码可在https://github.com/bohu615/corticomuscular-eigen-coder上找到。
- 用户可以从公共门户下载并打印任何出版物的一份副本,用于私人学习或研究。 - 您不得进一步分发材料或将其用于任何盈利活动或商业收益 - 您可以自由分发公共门户中标识出版物的 URL - 删除政策如果您认为本文档侵犯了版权,请通过 vbn@aub.aau.dk 与我们联系并提供详细信息,我们将立即删除对该作品的访问权限并调查您的索赔。
人类行走有四个主要步态特征:(1)人类用两条腿直立行走,(2)与地面接触时腿几乎完全伸展,(3)脚后跟先着地(跖行步态),以及(4)在后期摆动阶段,身体的重心(COG)位于支撑面之外。相比之下,双足步行机器人的重心,如 Mark Tilden 的 Robosapien 和本田更复杂的 Asimo,则始终位于支撑面之内。由于人类步态的直腿特性,在脚后跟接触时伸肌和屈肌的激活是混合的,并且各个腿部伸肌的活动并不同步。踝关节伸肌活动延迟,发生在脚后跟接触之后,此时大多数其他腿部伸肌的活动已经停止(Capaday,2002)。在其他哺乳动物中,例如猫,当脚第一次接触地面时,腿部伸肌的活动是同相的(趾行步态)。亚历山大(Alexander,1992)认为,人类直腿行走的特点是将腿像支柱一样使用,从而最大限度地减少了肌肉活动。鸟类用两条腿走路,但采取蹲姿。企鹅比其他鸟类走路更直立,但它们仍然采取蹲姿,并且像其他鸟类一样,用脚尖走路。因此,除了一些猴子和猿类偶尔采用类似的步态外,直立、双足、跖行步态模式是人类独有的,其神经控制需要根据其自身条件来理解(Capaday,2002)。在这里,我以批判的方式回顾了关于运动皮层(MCx)在人类行走过程中的作用的研究,以及与 MCx 控制相关的某些脊髓反射机制方面。提出 MCx 在行走等看似自动的任务中发挥作用似乎令人惊讶,但这样做是有充分理由的。MCx 不仅发出自愿运动指令,而且还介导对上肢肌肉伸展的反射样反应(Matthews 等人,1990 年;Capaday 等人,1991 年)和接触放置等综合反应(Amassian 等人,1979 年)。从皮质脊髓束 (CST) 损伤导致的运动缺陷来看,其重要性随着系统发育顺序的增加而增加(Passingham
抽象序列特异性的DNA结合蛋白(DBP)在生物学和生物技术中起关键作用,并且对具有基因组编辑和其他应用的新特异性的DBP的工程引起了极大的兴趣。尽管使用选择方法对自然发生的DBP进行重新编程,但识别任意目标位点的新DBP的计算设计仍然是一个杰出的挑战。我们描述了一种用于设计小型DBP的计算方法,该方法通过与主要凹槽中的碱基相互作用识别特定目标序列,并将这种方法与实验筛选结合使用,以生成5个不同DNA靶标的粘合剂。这些粘合剂表现出特异性,与目标DNA序列的计算模型紧密匹配,在多达6个基础位置和低至30 - 100 nm的亲和力下。设计的DBP-TARGET站点复合物的晶体结构与设计模型密切一致,突出了设计方法的准确性。设计的DBP在大肠杆菌和哺乳动物细胞中的功能都抑制和激活相邻基因的转录。我们的方法是迈向通往小型途径的重要步骤,因此很容易用于基因调节和编辑的可交付序列特异性DBP。
识字能改善大脑功能吗?它是否也会导致大脑功能丧失?我们利用功能性磁共振成像,测量了不同识字水平的成年人(10 人为文盲,22 人成年后识字,31 人在童年时期识字)对口语和书面语言、视觉面孔、房屋、工具和跳棋的大脑反应。识字能增强书写引起的左梭状回激活,因此会在此位置引发与面孔的小规模竞争,但同时也广泛增强了梭状回和枕叶皮质的视觉反应,并延伸至 V1 区。识字还能增强颞平面对语音的语音激活,并能自上而下地激活口头输入的正字法。大多数变化甚至发生在成年后获得识字能力时,这强调了童年和成人教育都可以极大地改善皮质组织。P
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
1 劳伦斯伯克利国家实验室生物系统与工程部,加利福尼亚州伯克利 94720,2 加利福尼亚大学伯克利分校物理系,加利福尼亚州伯克利 94720,3 艾伦脑科学研究所,华盛顿州西雅图 98109,4 加利福尼亚大学伯克利分校/旧金山分校神经工程与假肢中心,加利福尼亚州伯克利 94720-3370,5 加利福尼亚大学伯克利分校电气工程与计算机科学系,加利福尼亚州伯克利 94720,6 加利福尼亚大学伯克利分校海伦威尔斯神经科学研究所和雷德伍德理论神经科学中心,加利福尼亚州伯克利 94720,7 劳伦斯伯克利国家实验室科学数据部,加利福尼亚州伯克利 94720,以及 8 劳伦斯伯克利国家实验室生物系统与工程部,加利福尼亚州伯克利 94720
方法” 首席研究员:Vania Broccoli 博士 - CNR-米兰神经科学研究所 - IRCCS Ospedale San Raffaele,米兰 弗里德赖希共济失调 (FA) 是一种遗传性神经退行性疾病,导致步态和肢体进行性共济失调、构音障碍、腱反射丧失、锥体征和脊柱侧弯,并伴有心肌病和糖尿病。在某些情况下,患者会出现听力障碍和因视神经萎缩导致的视力严重丧失。关于这种疾病病理机制的大部分研究都集中在小脑和背神经节感觉神经元的退化。人们对视觉功能障碍和视网膜神经元退化的根本原因知之甚少。 我们的小组从 2 名患有中度或重度 AF 神经症状的患者体内生成了重编程干细胞 (iPSC),这 2 名患者分别因 Frataxin 基因中 GAA 性状的短暂或较大扩增而引起。在这个项目中,iPSC 细胞将分化为视网膜、感觉背神经节和大脑皮层的神经元,以研究细胞和线粒体的病理变化。通过比较分析,我们可以了解不同神经元类别中病理过程的进展和动态,这些神经元类别对 Frataxin 基因的失活更敏感(背神经节感觉神经元和视网膜神经元)或更抗性(大脑皮层神经元)。该项目的第二部分旨在利用 Cas9 蛋白生成“基因编辑”系统,目的是通过表观遗传机制重新激活沉默的 Frataxin 基因。通过这种方式,可以去除沉默基因的染色质修饰,诱导其启动子的重新激活和基因的重新表达。这种策略的优势在于,它能够以自身水平的表达激活内源基因,从而避免传统基因治疗方法中可能出现的基因过度表达引起的副作用。该系统的有效性将通过在患者成纤维细胞和疾病小鼠模型中重新激活 Frataxin 基因的能力来评估。还将研究 Frataxin 重新激活是否能够恢复以及在多大程度上恢复患者 iPSC 中存在的细胞和线粒体缺陷。该项目旨在通过使用患者干细胞生成受疾病不同影响的各类神经元,获得有关 FA 病理机制的新知识。此外,还将开发新的分子工具,可用于重新激活疾病中沉默的 Frataxin 基因,从而成为 AF 的新精准医疗治疗选择。 Tipo Ricerca:工作室预临床 Costo globale del Progetto 320.000 €,持续时间 2 anni(2022 年 4 月 – 2024 年 4 月)