本文介绍了一种新颖的方法,可以使用极端点,即每个对象的最上方,最左侧,最左侧,bottommost和最右点进行学习。这些要点在现代边界框注释过程中很容易获得,同时为预分段提供了强大的线索,因此可以使用盒子监督的方法以相同的注释成本来提高性能。我们的工作将极端点视为真实实例掩盖的一部分,并传播它们以识别潜在的前面和背景点,它们全部用于训练伪标签生成器。然后,发电机给出的伪标签又用于监督我们的最终模型。在三个公共基准测试中,我们的方法大大优于现有的盒子监督方法,以完全监督的对应物进一步缩小了差距。尤其是,当目标对象分为多个部分时,我们的模型会生成高质量的掩码,而以前的盒子监督方法通常会失败。
●Breiman(2001)首先提出了随机森林算法,但基于1995年的Tim Kan Ho●RF采用了两种集合技术:首先是训练样本,以种植基于不同培训训练数据的树木森林。第二个是特征空间的子采样。●如果我选择变量的子集(例如x1, x3, x7) to create a split in a node of a decision tree, and another subset (x2, x4, x5, x7) to create a different one, there will be events that get classified in a different way by the two nodes ● Often there is a dominant variables that is used to decide the split, offsetting the power of the subdominant ones.rf通过减少不同树的相关性来避免该问题
颅骨插曲是重要的第一步。基于学习的细分模型(例如U-NET模型)在自动执行此细分任务时显示出令人鼓舞的结果。但是,当涉及到新生儿MRI数据时,在培训这些模型期间,没有任何可公开可用的大脑MRI数据集随着手动注释的segmentment口罩而被用作标签。大脑MR图像的手动分割是耗时,劳动力密集的,需要专业知识。此外,由于成人数据和新生儿数据之间的较大域移动,使用对成人脑MR图像进行训练的分割模型进行分割新生脑图像无效。因此,需要对新生儿大脑MRI的更有效,准确的颅骨剥离方法。在本文中,我们提出了一种无监督的方法,以适应经过成人MRI训练的U-NET颅骨剥离模型,以有效地在新生儿上工作。我们的资产证明了我们新颖的未加剧方法在提高分割准确性方面的有效性。我们提出的方法达到了总体骰子系数为0。916±0。032(平均值±STD),我们的消融研究巩固了我们提议的有效性。非常重要的是,我们的模型的性能与我们进行了综合的当前最新监督模型非常接近。所有代码均可在以下网址提供:https://github.com/abbasomidi77/daunet。这些发现表明,这种方法是一种有价值,更容易,更快的工具,用于支持医疗保健专业人员,以检查新生大脑的先生。
胎儿心脏视图的解剖结构检测对于诊断胎儿先天性心脏病至关重要。实际上,不同的Hos-Pitals数据之间存在较大的域间隙,例如由于采集设备的不同而引起的可变数据质量。此外,产科专家提供的准确的符号信息非常昂贵甚至无法使用。本研究探讨了无监督的域自适应胎儿心脏结构检测问题。现有的无监督域自适应观察检测(UDAOD)的方法主要集中在自然场景中的特定物体,例如雾gy的城市景观中,自然场景的结构关系是不确定的。Unlike all previous UDAOD scenarios, we first collected a F etal C ardiac S tructure dataset from two hos- pital centers, called FCS , and proposed a multi-matching UDA approach ( M 3 -UDA ), including H istogram M atching (HM), S ub-structure M atching (SM), and G lobal-structure M atching (GM), to better transfer the在医疗场景中进行UDA检测的解剖结构的拓扑知识。HM减轻由像素转换引起的源和目标之间的域间隙。sm融合了子结构的不同角度信息,以遵循局部拓扑知识,以弥合内部子结构的主要间隙。GM旨在使整个器官的全球拓扑知识与目标域相结合。对我们收集的FCS和Cardiacuda进行了广泛的实验,实验结果表明,M 3 -UDA的表现胜过现有的UDAOD研究。数据集和源代码可在https://github.com/xmed-lab/m3-uda
有关 BATA 决议第 166 号(修订版)的更新,即 2024-33 财政年度(FY)的 BATA 十年收费桥梁资本改善计划(CIP),以供参考。此更新反映了当前采用的 CIP 中包含的项目的成本和时间表的变化。工作人员还将提供更新的收费桥梁计划报告以供参考。工作人员将在 2025 年 1 月 22 日的 BATA 会议上请求批准 CIP。
地球科学中标记的培训数据的可用性反映在监督分析中使用的训练数据数量中。除了上述10年的分析外,我们还从2018 - 2019年的AGU论文中手动提取了其他相关信息,包括应用的ML算法,标记的培训数据的数量和数据类型(模型输出,卫星,原位,原位,重新分析等)。在我们调查的论文中,大多数ML算法是使用数百个标记样品培训的。但是,对于使用模型输出或大型,已建立的数据集的某些应用程序,培训数据的数量范围更大。缺乏训练数据在生物学科学和陆地水圈(水文)研究中尤其急切。
1。一种自我监督的模型登录方法,仅取决于正面匹配对以改善面部嵌入。2。面部聚类的基于深度学习的相似性度量,该指标会自动适应给定模型的学习嵌入空间。3。不需要任何用户输入参数的全自动视频面聚类算法。4。发布电影脸聚类基准数据集,称为MoviefaceCluster,该数据集提供了电影域中存在的极端挑战的面部聚类场景。
永久牧场可以拥有高植物多样性,包括一些稀有植物。环境影响评估(EIA)法规已适当以保护这种多样性。但是,某些永久性牧场的植物多样性低,生产率较低,并且由对牲畜的古怪性低的杂草草主导。
许多基于机器学习的轴突追踪方法依赖于带有分割标签的图像数据集。这需要领域专家的手动注释,这需要大量劳动力,并且不适用于以细胞或亚细胞分辨率对半球或整个脑组织进行大规模脑映射。此外,保留轴突结构拓扑对于理解神经连接和大脑功能至关重要。自监督学习 (SSL) 是一种机器学习框架,允许模型在未注释的数据上学习辅助任务,以帮助完成监督目标任务。在这项工作中,我们提出了一种新颖的 SSL 辅助任务,即为面向拓扑的轴突分割和中心线检测的目标任务重建边缘检测器。我们使用小鼠大脑数据集对三个不同的 SSL 任务进行了 3D U-Nets 预训练:我们提出的任务、预测排列切片的顺序和玩魔方。然后,我们在不同的小鼠大脑数据集上评估了这些 U-Nets 和基线模型。在所有实验中,针对我们提出的任务进行预训练的 U-Net 分别将基线的分割、拓扑保留和中心线检测提高了 5.03%、4.65% 和 5.41%。相比之下,切片排列和魔方预训练的 U-Net 并没有比基线有持续的改进。
