尽管用于语义图像编辑的深度神经模型最近取得了进展,但目前的方法仍然依赖于明确的人工输入。先前的工作假设有手动整理的数据集可用于监督学习,而对于无监督方法,需要人工检查发现的组件以识别那些修改有价值语义特征的组件。在这里,我们提出了一种新颖的替代方法:利用大脑反应作为学习语义特征表示的监督信号。在一项神经生理学实验中,向参与者 (N=30) 展示人工生成的面孔并指示他们寻找特定的语义特征,例如“老”或“微笑”,同时通过脑电图 (EEG) 记录他们的大脑反应。使用从这些反应推断出的监督信号,学习生成对抗网络 (GAN) 潜在空间内的语义特征,然后将其用于编辑新图像的语义特征。我们表明,隐性大脑监督实现的语义图像编辑性能与显性手动标记相当。这项工作证明了利用通过脑机接口记录的隐性人类反应进行语义图像编辑和解释的可行性。
最后,Darktrace 还使用各种机器学习技术来自动执行调查工作流程中执行的重复且耗时的任务。通过分析专家网络分析师如何与 AI 的输出进行交互(例如他们如何分类威胁警报以及他们如何使用第三方来源),Darktrace 能够复制这些专家行为并自动执行某些分析师功能。这使得所有成熟度级别的分析师都能进行越来越高效和简化的调查。它还为安全团队提供了他们所需的关键时间,使他们能够专注于更高价值的战略工作,例如管理风险和专注于更广泛的业务改进。
有关 BATA 决议第 166 号(修订版)的更新,即 2024-33 财政年度(FY)的 BATA 十年收费桥梁资本改善计划(CIP),以供参考。此更新反映了当前采用的 CIP 中包含的项目的成本和时间表的变化。工作人员还将提供更新的收费桥梁计划报告以供参考。工作人员将在 2025 年 1 月 22 日的 BATA 会议上请求批准 CIP。
由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
尽管上下文化的语言模型最近在各种NLP任务上取得了成功,但语言模型本身仍无法捕获长长的多句文档的文本共同(例如,段落)。人类经常就发言之前就何种方式以及如何发言做出结构性决定。通过这种高级决策和以连贯的方式构建文本的指导性实现被称为计划过程。模型可以在哪里学习这样的高级相干?段落本身包含在这项工作中称为自upervision的各种形式的归纳相干信号,例如句子顺序,局部关键字,修辞结构等。以此为动机,这项工作为新的段落完成任务p ar -c om;在图形中预测蒙版的句子。但是,该任务遭受了预测和选择相对于给定上下文的适当局部内容。为了解决这个问题,我们提出了一个自我监督的文本计划,该计划可以预测首先说出的内容(内容预测),然后使用预测的内容指导验证的语言模型(表面实现)。SSPlanner在自动和人类评估中的段落完成任务上的基线生成模型优于基线生成模型。我们还发现,名词和动词类型的关键字的组合是最有效的内容选择。提供了更多内容关键字,总体发电质量也会提高。
本文介绍了一种新颖的方法,可以使用极端点,即每个对象的最上方,最左侧,最左侧,bottommost和最右点进行学习。这些要点在现代边界框注释过程中很容易获得,同时为预分段提供了强大的线索,因此可以使用盒子监督的方法以相同的注释成本来提高性能。我们的工作将极端点视为真实实例掩盖的一部分,并传播它们以识别潜在的前面和背景点,它们全部用于训练伪标签生成器。然后,发电机给出的伪标签又用于监督我们的最终模型。在三个公共基准测试中,我们的方法大大优于现有的盒子监督方法,以完全监督的对应物进一步缩小了差距。尤其是,当目标对象分为多个部分时,我们的模型会生成高质量的掩码,而以前的盒子监督方法通常会失败。
精确农业涉及使用实时信息来增强对资源的有效利用和对农业方法的监督,同时却最大程度地减少了不利的环境影响。多亏了遥感技术的进步,现在在农业部门中生产了大量的大数据。当使用机器和深度学习技术进行分析时,该数据需要转换为有价值的信息,已证明是有益的。这个研究主题“大数据,机器和深度学习的最新进展”吸引了20种高质量的文章,这些文章涵盖了现状的应用以及人工智能,大数据,特征优化,作物疾病检测和分类的精确农业的技术发展。在不断发展的农业景观中,三个关键主题已成为变革性变革的信标。本社论探讨了塑造农业未来的创新领域,重点是三个相互联系的主题:植物疾病检测和作物健康监测的进步,在精确农业中的人工智能(AI)和机器学习(ML)的整合以及用于作品生产优化的方法。在农业科学领域,由于开创性的研究努力,植物疾病检测和作物健康监测的动态景观已经取得了重大进展。Shoaib等。解决噬菌毒全球问题通过强调机器学习技术的关键作用来面对手动监测植物疾病的持续挑战。他们的工作提出了一个基于深度学习的系统,利用了在一个大量数据集中训练的卷积神经网络(Inception Net),其中包括18,161个细分和非细分的番茄叶图像。值得注意的是使用两个最先进的语义分割模型U-NET和修改的U-NET进行疾病检测和分割。结果展示了修改后的U-Net模型的出色性能,超过现有方法,并以高精度对植物疾病进行分类时的效率。
我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
胎儿心脏视图的解剖结构检测对于诊断胎儿先天性心脏病至关重要。实际上,不同的Hos-Pitals数据之间存在较大的域间隙,例如由于采集设备的不同而引起的可变数据质量。此外,产科专家提供的准确的符号信息非常昂贵甚至无法使用。本研究探讨了无监督的域自适应胎儿心脏结构检测问题。现有的无监督域自适应观察检测(UDAOD)的方法主要集中在自然场景中的特定物体,例如雾gy的城市景观中,自然场景的结构关系是不确定的。Unlike all previous UDAOD scenarios, we first collected a F etal C ardiac S tructure dataset from two hos- pital centers, called FCS , and proposed a multi-matching UDA approach ( M 3 -UDA ), including H istogram M atching (HM), S ub-structure M atching (SM), and G lobal-structure M atching (GM), to better transfer the在医疗场景中进行UDA检测的解剖结构的拓扑知识。HM减轻由像素转换引起的源和目标之间的域间隙。sm融合了子结构的不同角度信息,以遵循局部拓扑知识,以弥合内部子结构的主要间隙。GM旨在使整个器官的全球拓扑知识与目标域相结合。对我们收集的FCS和Cardiacuda进行了广泛的实验,实验结果表明,M 3 -UDA的表现胜过现有的UDAOD研究。数据集和源代码可在https://github.com/xmed-lab/m3-uda
深度神经网络的最新进展成功地改善了各种学习问题[40,8,26,19,20]。但是,对于监督学习,大量的训练数据仍然是学习准确的深层模型的关键。尽管可能可用于一些预先规定的域,例如ImageNet [7],但对于每个临时目标域或任务而言,手动标签通常很难或昂贵。缺少IN-ININAIN标记的数据阻碍了在许多实际问题中拟合模型的应用。在没有来自目标域的标记数据的情况下,已经出现了无监督的域适应(UDA)方法,以减轻数据分布的域移动[2,1,1,5,37,30,18,3,3,17]。它与无监督的学习有关,因为它仅需要从源域和目标域的零标签手动标签。在最近关于UDA的工作,这是Long等人提出的开创性工作。[22,25]旨在最大程度地减少深神经网络中源和目标域之间的差异,在此,在该网络中,域差异通过最大值
