文本对图像(T2I)合成是一项艰巨的任务,该任务是对文本和图像域及其关系进行建模。最近作品实现的图像质量的实质性改进为Nuberon应用程序铺平了道路,例如语言辅助图像编辑,计算机辅助设计,基于文本的图像检索和培训数据增强。在这项工作中,我们提出了一个简单的问题:与逼真的图像一起,我们是否可以以一种不受影响的方式获得任何有用的副产品(例如前景 /背景或多类分割掩码,检测标签,检测标签),这也将使其他计算机视觉任务任务和应用受益?试图回答这个问题,我们探索了从给定文本中的逼真的图像及其相应的前景 /背景分割掩码。为了实现这一目标,我们与GAN一起实验了共进行分割的概念。具体而言,提出了一种名为“共裂”启发的GAN(COS-GAN)的新型GAN结构,该结构同时从不同的噪声矢量中同时生成两个或多个图像,并利用图像特征之间的空间关注机制来生成逼真的分段掩码,以生成生成的Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Agens。这种架构的优点是两倍:1)生成的分割掩码可用于专注于前景和背景,以改善生成的图像的质量,2)分段蒙版可以用作其他任务的训练目标,例如访问本地化和分割。在CUB,Oxford-102和可可数据集上进行的广泛实验表明,Cos-Gan能够改善视觉质量,并为发电图像提供可靠的前景 /背景掩码。
胎儿心脏视图的解剖结构检测对于诊断胎儿先天性心脏病至关重要。实际上,不同的Hos-Pitals数据之间存在较大的域间隙,例如由于采集设备的不同而引起的可变数据质量。此外,产科专家提供的准确的符号信息非常昂贵甚至无法使用。本研究探讨了无监督的域自适应胎儿心脏结构检测问题。现有的无监督域自适应观察检测(UDAOD)的方法主要集中在自然场景中的特定物体,例如雾gy的城市景观中,自然场景的结构关系是不确定的。Unlike all previous UDAOD scenarios, we first collected a F etal C ardiac S tructure dataset from two hos- pital centers, called FCS , and proposed a multi-matching UDA approach ( M 3 -UDA ), including H istogram M atching (HM), S ub-structure M atching (SM), and G lobal-structure M atching (GM), to better transfer the在医疗场景中进行UDA检测的解剖结构的拓扑知识。HM减轻由像素转换引起的源和目标之间的域间隙。sm融合了子结构的不同角度信息,以遵循局部拓扑知识,以弥合内部子结构的主要间隙。GM旨在使整个器官的全球拓扑知识与目标域相结合。对我们收集的FCS和Cardiacuda进行了广泛的实验,实验结果表明,M 3 -UDA的表现胜过现有的UDAOD研究。数据集和源代码可在https://github.com/xmed-lab/m3-uda
尽管上下文化的语言模型最近在各种NLP任务上取得了成功,但语言模型本身仍无法捕获长长的多句文档的文本共同(例如,段落)。人类经常就发言之前就何种方式以及如何发言做出结构性决定。通过这种高级决策和以连贯的方式构建文本的指导性实现被称为计划过程。模型可以在哪里学习这样的高级相干?段落本身包含在这项工作中称为自upervision的各种形式的归纳相干信号,例如句子顺序,局部关键字,修辞结构等。以此为动机,这项工作为新的段落完成任务p ar -c om;在图形中预测蒙版的句子。但是,该任务遭受了预测和选择相对于给定上下文的适当局部内容。为了解决这个问题,我们提出了一个自我监督的文本计划,该计划可以预测首先说出的内容(内容预测),然后使用预测的内容指导验证的语言模型(表面实现)。SSPlanner在自动和人类评估中的段落完成任务上的基线生成模型优于基线生成模型。我们还发现,名词和动词类型的关键字的组合是最有效的内容选择。提供了更多内容关键字,总体发电质量也会提高。
永久牧场可以拥有高植物多样性,包括一些稀有植物。环境影响评估(EIA)法规已适当以保护这种多样性。但是,某些永久性牧场的植物多样性低,生产率较低,并且由对牲畜的古怪性低的杂草草主导。
许多基于机器学习的轴突追踪方法依赖于带有分割标签的图像数据集。这需要领域专家的手动注释,这需要大量劳动力,并且不适用于以细胞或亚细胞分辨率对半球或整个脑组织进行大规模脑映射。此外,保留轴突结构拓扑对于理解神经连接和大脑功能至关重要。自监督学习 (SSL) 是一种机器学习框架,允许模型在未注释的数据上学习辅助任务,以帮助完成监督目标任务。在这项工作中,我们提出了一种新颖的 SSL 辅助任务,即为面向拓扑的轴突分割和中心线检测的目标任务重建边缘检测器。我们使用小鼠大脑数据集对三个不同的 SSL 任务进行了 3D U-Nets 预训练:我们提出的任务、预测排列切片的顺序和玩魔方。然后,我们在不同的小鼠大脑数据集上评估了这些 U-Nets 和基线模型。在所有实验中,针对我们提出的任务进行预训练的 U-Net 分别将基线的分割、拓扑保留和中心线检测提高了 5.03%、4.65% 和 5.41%。相比之下,切片排列和魔方预训练的 U-Net 并没有比基线有持续的改进。
神经科学的最新进展强调了多模式医学数据在研究某些病理和了解人类认知方面的有效性。但是,获得一组不同的模态的完整集受到各种因素的限制,例如长期获取时间,高检查成本和伪影抑制。此外,神经影像数据的复杂性,高维度和异源性仍然是有效地利用现有随机扫描的另一个关键挑战,因为不同机器通常对相同方式的数据进行了不同的测量。显然需要超越传统成像依赖性过程,并从源中综合解剖学特定的目标模式数据。在本文中,我们建议学习使用新型CSCℓ4NET跨内部和模式内变化的专用特征。通过特征图和多元典范适应性中的模态数据的初始统一,CSCℓ4净4净促进了特征级别的相互转换。正定的riemannian歧管 - 惩罚数据限制项进一步使CSCℓ4NET可以根据变换的特征重新构建缺失测量值。最后,最大化ℓ4 -norm沸腾到计算上有效的优化问题。具有较大的实验可以验证我们的CSCℓ4NET的能力和鲁棒性与Multiple数据集中的最新方法相比。
地球科学中标记的培训数据的可用性反映在监督分析中使用的训练数据数量中。除了上述10年的分析外,我们还从2018 - 2019年的AGU论文中手动提取了其他相关信息,包括应用的ML算法,标记的培训数据的数量和数据类型(模型输出,卫星,原位,原位,重新分析等)。在我们调查的论文中,大多数ML算法是使用数百个标记样品培训的。但是,对于使用模型输出或大型,已建立的数据集的某些应用程序,培训数据的数量范围更大。缺乏训练数据在生物学科学和陆地水圈(水文)研究中尤其急切。
本文介绍了一种新颖的方法,可以使用极端点,即每个对象的最上方,最左侧,最左侧,bottommost和最右点进行学习。这些要点在现代边界框注释过程中很容易获得,同时为预分段提供了强大的线索,因此可以使用盒子监督的方法以相同的注释成本来提高性能。我们的工作将极端点视为真实实例掩盖的一部分,并传播它们以识别潜在的前面和背景点,它们全部用于训练伪标签生成器。然后,发电机给出的伪标签又用于监督我们的最终模型。在三个公共基准测试中,我们的方法大大优于现有的盒子监督方法,以完全监督的对应物进一步缩小了差距。尤其是,当目标对象分为多个部分时,我们的模型会生成高质量的掩码,而以前的盒子监督方法通常会失败。