在材料设计中,目标是确定可以在某些起始材料或物质上执行的化学和物理操作的途径,以将其转换为所需的目标材料。这项研究的目的是证明在自动实验室中基于目标的增强学习(RL)的潜力。我们的实验表明,当给出一个目标(例如目标材料)和一组初始材料时,RL可以学习实现该目标的一般途径。我们假设训练有素的RL化学家可以通过学习完成重复性,劳动密集型和/或需要高度精确度的任务来帮助减少这些及相关ELDS的实验时间和成本。随着模拟复杂性的增加,训练有素的RL化学师可能会在该系统中发现新材料和/或反应途径。为了支持这一点,我们共享允许科学家和
48 Cr是双光子发射计算机断层扫描的有前途的放射性同位素。1)提出的方法可以实现高空间分辨率和高信号噪声比。2)作为48 cr,一对112和308-kev Photons可用于重合成像。1)我们计划在46 Ti(α,2 N)48 Cr反应中产生48 Cr。在核医学中,必须将48 CR与目标材料和副产物进行化学分离。 在这项研究中,我们使用51 cr(t 1 /2 = 27.7 d)的Nat Ti(α,Xn,Xn,Xn)51 Cr反应产生的51 cr(t 1 /2 = 27.7 d)的α-粒子辐照NAT TI(NAT =天然同位素丰度)靶标的无载液cr radiotracers的生产方法。 将来,可以使用昂贵的46 Tio 2作为目标材料生产48 Cr。 因此,我们还研究了CR放射性示踪剂生产后的目标材料的回收率。 48,51 cr是在使用Riken AVF Cyclotron的Nat Ti(α,Xn)48,51 Cr Rections中产生的。 将45 mg/cm 2的金属NAT TI板用28.9-MEV的强度为3.1粒子μA。 在NAT Ti(α,X)48 V反应中还产生了48 V(T 1/2 = 16.0 D)的48 V(T 1 /2 = 16.0 D),并且作为电子捕获和β + -48 Cr的女儿(t 1/2 = 21.6 h)。 希望在成像实验之前使用48 Cr的成像实验之前去除长期寿命的48 V,以增加信噪比。 将辐照的NAT Ti板(63.4 mg)溶解在1 ml浓缩的HF(c。hf)和0.3 mL C的混合物中。 HNO 3通过加热,并将溶液蒸发至干燥。在核医学中,必须将48 CR与目标材料和副产物进行化学分离。在这项研究中,我们使用51 cr(t 1 /2 = 27.7 d)的Nat Ti(α,Xn,Xn,Xn)51 Cr反应产生的51 cr(t 1 /2 = 27.7 d)的α-粒子辐照NAT TI(NAT =天然同位素丰度)靶标的无载液cr radiotracers的生产方法。将来,可以使用昂贵的46 Tio 2作为目标材料生产48 Cr。因此,我们还研究了CR放射性示踪剂生产后的目标材料的回收率。48,51 cr是在使用Riken AVF Cyclotron的Nat Ti(α,Xn)48,51 Cr Rections中产生的。将45 mg/cm 2的金属NAT TI板用28.9-MEV的强度为3.1粒子μA。在NAT Ti(α,X)48 V反应中还产生了48 V(T 1/2 = 16.0 D)的48 V(T 1 /2 = 16.0 D),并且作为电子捕获和β + -48 Cr的女儿(t 1/2 = 21.6 h)。希望在成像实验之前使用48 Cr的成像实验之前去除长期寿命的48 V,以增加信噪比。将辐照的NAT Ti板(63.4 mg)溶解在1 ml浓缩的HF(c。hf)和0.3 mL C的混合物中。 HNO 3通过加热,并将溶液蒸发至干燥。用1 ml的c溶解残留物。 HF加热,并将溶液蒸发至干燥。通过加热将残留物溶解在6 ml的4.5 m HF中。随后,将溶液馈入阴离子交换柱(Muromac 1x8,100-200 et chemes,10 mm i.d.×110毫米高)。用9 ml(1 ml×9)的4.5 m HF和35 mL(5 ml×7)的C洗涤树脂。 HF。组合了4.5 m HF的分数,并将3 mL用于ICP-MS测量,以确认NAT TI的污染。使用阳离子交换色谱法将4.5 m HF的其余部分蒸发至干燥,并进一步纯化48 V。将残基溶解在3 ml的0.5 m HNO 3中。溶液(1 mL×3)被送入阳离子交换柱(Muromac 50wx8,100-200 Mesh,5 mm I.D.×50毫米高)。用0.5 m HNO 3和5 ml(1 ml×5)的3 ml(1 ml×3)洗涤树脂,为6 m HNO 3。用GE检测器对阴离子和阳离子交换柱进行每个洗脱液进行γ射线光谱法进行了γ射线光谱法,以获得51 cr和48 V的洗脱曲线。以评估每个c的Nat Ti的洗脱曲线。 HF
根据成分和加工参数(例如温度和压力)预测目标材料的性能。这种方法加速了材料的开发。当已知材料的物理性质受其加工后微观结构的强烈影响时,可以通过将微观结构相关数据(例如 x 射线衍射 (XRD) 和差示扫描量热法 (DSC) 数据)纳入模型中来有效提高模型的性能预测精度。然而,这些类型的数据只能通过实际分析加工后的材料来获得。除了这些分析之外,提高预测精度还需要预先确定的参数(例如材料成分)。3. 该研究小组开发了一种人工智能技术,能够首先选择潜在的有前途的
材料合成路线的开发通常基于启发式和经验。一种可能的新方法是应用数据驱动的方法,从过去的经验中学习合成模式,并利用它们来预测新材料的合成。然而,由于缺乏大规模的合成配方数据库,这条路线受到了阻碍。在这项工作中,我们应用先进的机器学习和自然语言处理技术构建了一个从科学文献中提取的 35,675 个基于溶液的合成程序的数据集。每个程序都包含必要的合成信息,包括前体和目标材料、它们的数量以及合成操作和相应的属性。每个程序还都增加了反应公式。通过这项工作,我们将免费提供第一个基于溶液的无机材料合成程序的大型数据集。
DRP配置功能现在已进一步扩展,以支持共同散布和共反应性溅射。drp 2.5使用磁控管输出配置,但具有两个或更多不同的目标材料,形成单个薄膜材料,其中包含两个或多个组成元素。没有其他磁控管输出配置(例如此)可用于共同启动或共反应溅射。这种构型产生了几个重要的好处,包括:1)较低的底物加热,这对于热敏感的底物(即塑料,包括聚对苯二甲酸酯[PET],最常见的热塑性塑料等非常重要); 2)比标准双极,双磁孔溅射(DMS)明显高的沉积速率; 3)较低的弧产生导致较低的颗粒产生。对于诸如PET之类的材料的网络涂料,较低的底物加热至关重要。
统一。7-11尽管Cd基量子点具有吸引人的特性,但由于重金属固有的毒性,其应用受到很大限制。因此,人们做出了巨大的努力来发现有效的无重金属替代品合成策略,如基于InP、ZnTe和ZnSe的纳米晶体。6,12虽然过去十年来这些无重金属组合物的光学性质有了显着改善,但由于用于合成设计和优化的基于反复试验的方法,阻碍其发现和优化的主要瓶颈仍然存在。这种反复试验的方法阻碍了整个发现过程,包括识别目标材料和随后开发合成途径以实现最佳光学特性。用于合成胶体量子点的传统烧瓶式间歇反应器平台通常需要进行大量实验来探索巨大的反应空间,然后才能接受或放弃合成配方。虽然对成核生长过程的热力学和动力学理解可以提供有用的见解,但它们通常非常复杂且理解不足,无法为优化半导体纳米晶体合成参数提供可靠的框架。作为
摘要材料信息学(MI)研究是通过大规模材料数据通过机器学习(ML)发现新材料的研究,近年来引起了人们的关注。通常,由于目标材料域的差异,MI中使用的大规模材料数据是偏差的。此外,关于MI的大多数研究尚未清楚地证明数据偏差对ML模型的影响。在这项研究中,我们通过结合了以前由我们小组开发的StarryData2材料数据库中的大规模实验性能数据的概念来阐明数据偏差对ML模型的影响。结果表明,数据偏差会影响ML模型进行的预测的错误和可靠性。与在域外制造的域相比,应用程序能力域内的ML模型的预测非常可靠。这表明构造的ML模型可以可靠发现的物质空间有限。尽管如此,我们将ML模型应用于包含各种材料类别的大型数据集,并发现可以在有限的空间内提出类似于已知材料的新材料。因此,我们的发现证明了在MI中构建和评估ML模型时考虑数据偏差的重要性。
由于在较高的质量范围内缺乏任何检测信号,因此在直接检测实验的下一个前沿中出现了轻暗物质质量状态。在本文中,我们提出了一种新的检测材料,即一块石墨烯的双层堆栈来检测Sub-Mev暗物质。其电压可调的低能亚ev电子带隙使其成为轻质暗物质搜索实验的检测器材料的绝佳选择。我们使用随机相位近似计算其介电函数,并估计对亚M-EV暗物质电子散射和SUB-EV暗物质吸收的预测灵敏度。我们表明,双层石墨烯暗物质检测器可以像其他候选目标材料一样具有竞争力敏感性,例如超导体,但在这种大规模状态下具有可调阈值。双层石墨烯中的暗物质散射速率也以地球旋转的每日调制为特征,这可能有助于我们在将来的实验中减轻背景。我们还概述了检测器设计概念,并提供了可以在将来设置实验的噪声估计值。
穿透金属装甲的射弹会使材料处于复杂的应力状态,从而导致装甲失效。金属装甲可能发生多种类型的失效(Backman 和 Godsmith,1978 年),但许多研究都集中于剪切塞失效机制,这是导致装甲钢的抗弹性能降低的原因。剪切塞被归类为低能量失效,通常由钝头射弹或钝碎片的撞击引起(Cimpoeru,2016 年)。对装甲钢目标进行的许多微观结构观察表明目标内部存在绝热剪切带(Solberg 等人,2007 年)。通常,如果存在高应变率载荷下局部塑性变形的有利条件,则可能发生绝热剪切。当冲击引起的变形发生得如此之快,以致热软化超过目标材料的加工和应变速率硬化时,变形将局限于强烈剪切的狭窄区域,即绝热剪切带 (ASB)。根据研究 (Guo et al ., 2020),ASB 的形成步骤如下:应力崩塌、应变局部化、温度升高、剪切带起始和裂纹形成。给定材料中存在 ASB 的必要条件是发生热机械不稳定性,表现为塑性流动应力随变形值的增加而降低。
添加材料并通过细化组成晶粒来提高强度(图1中Ⅰ)。理想的最终目标材料是纳米多晶体,其中纳米级金刚石或立方氮化硼晶粒直接紧密地结合在一起,而不包含任何粘合剂材料(图1中Ⅱ)。最终材料可以形成与单晶金刚石相似的高精度切削刃。此外,这种材料的不可解理性使切削刃的强度超过了单晶的强度。由于这些优异的特性,该材料在精密和微加工应用中很有前途。然而,这种创新的纳米晶材料不能仅仅通过扩展传统技术来创造。相反,开发创新的新工艺(产品创新)至关重要。我们开始研究和开发纳米多晶金刚石和纳米多晶立方氮化硼,旨在创造适用于更高速、更高效和更高精度切削应用的终极切削刀具材料。我们经过多年的努力,通过建立超高压新技术和直接转化烧结工艺,成功研制出这些新型超硬材料。本文详细介绍了这些新型超硬材料的开发、特性和应用。