摘要:本研究提出了一种设计电力电子转换器的方法,称为“面向制造的自动设计”(ADFM)。该方法建议使用标准化转换器单元创建电源转换器阵列 (PCA)。该方法受到微电子集成电路设计流程、电力电子构建块和多单元转换器的极大启发。为了实现所需的电压/电流规格,PCA 转换级由多个转换标准单元 (CSC) 串联和/或并联组装而成。ADFM 使用基于数据的模型来模拟 PCA 的行为,计算工作量极小。这些模型需要一种特殊的特性描述方法来最大限度地增加知识量,同时最大限度地减少数据量。这种方法包括制定实验计划以选择包含有关 PCA 技术最多信息的相关测量,构建能够自动获取数据的实验装置,并使用统计学习来训练能够产生精确预测的模型。本研究在九个不同的 PCA 中进行了超过 210 小时的测试,以便将数据收集到统计模型中。这些模型预测了几种 PCA 的效率和转换器温度,并将准确度与实际测量值进行了比较。最后,使用这些模型比较了特定电池充电应用中 PCA 的性能。
摘要 - 用氧气和碳植入的氮化甘露的氮化岩在室温下显示载体介导的自旋机制。使用Tris(环戊二烯基)Gadolinium前体通过金属有机化学蒸气沉积生长的GD掺杂的GAN显示出普通的霍尔效应,并且在室温下没有浪漫主义。在o或c植入GD掺杂的GAN中,观察到表明载体介导的自旋和铁磁性的异常大厅效应。即使在植入后也保持良好的晶体质量。o和c偏爱间质站点,并在GD掺杂的GAN中占据了深层的受体型状态。由GD掺杂的GAN诱导的gadolinium诱导的室温自旋和铁磁性被占据间隙部位的O和C激活。载体介导的自旋功能的机制显示了对控制和操纵自旋作为氮化壳中的量子状态的潜力。这使gagdn:o/c成为室温旋转和量子信息科学应用的潜在半导体材料基础。在本文中,研究了使用离子植入,使用X射线衍射的结构表征在GD掺杂GAN中掺杂,并研究了使用高级HALL效应的自旋相关测量,并进行了相应的讨论。
*指定范围 加工和储存(指导值) 准备 CW 1302 含有填料,这些填料会随着时间的推移而沉淀。因此建议在使用前仔细均质化容器中的所有内容物。在生产设备的储存容器中,应不时搅拌预填充的产品,以避免沉淀和计量不规则。 混合 最好在搅拌硬化剂之前将树脂加热到 40 – 50 °C 来制备铸造混合物。在 5 – 10 mbar 真空下对混合物进行短暂脱气可提高混合物的均匀性并增强铸件的介电性能。 固化 要确定交联是否已完成以及最终性能是否最佳,必须对实际物体进行相关测量或测量玻璃化转变温度。客户制造过程中的不同凝胶和固化循环可能导致不同的交联程度,从而导致不同的玻璃化转变温度。储存条件 根据标签上注明的储存条件将成分存放在密封的原装容器中,并放置在干燥的地方。在这些条件下,保质期将与标签上注明的有效期相对应。在此日期之后,产品只能在重新分析后进行处理。部分空的容器在使用后应立即盖紧。有关废物处理和火灾时分解的危险产物的信息,请参阅这些特定产品的材料安全数据表 (MSDS)。
本文旨在揭示不同显示设计原则在直升机领域的影响。在低空前向直升机飞行期间评估了两种不同的避障支持显示:基线平视显示器 (HUD) 由传统的咨询显示器或受生态界面设计启发的基于约束的显示器补充。后者在直升机领域应用很少。假设咨询显示减少了工作量,提高了态势感知能力,并在正常避障情况下改善了性能指标,而基于约束的显示提高了飞行员-车辆系统对意外、非正常情况的适应能力。12 名具有不同飞行经验的直升机飞行员参加了代尔夫特理工大学 SIMONA 研究模拟器的一项实验。与预期相反,实验表明显示器对任何相关测量均无显著影响。但是,与基线 HUD 相比,使用任何支持显示器时,飞行员的工作量都有减少,情况意识也有所提高。飞行员更喜欢在正常情况下使用咨询显示器,而在非正常情况下使用基于约束的显示器,这与固定翼领域的研究结果相似。控制任务的时间框架相对较短且单调,已经提示丰富的基线 HUD 条件以及显示器之间的相似性可能阻碍了揭示条件之间更大的差异。未来的研究将分析该实验的避障轨迹,可能揭示显示器引起的控制策略变化,即使集中性能指标相似。后续实验将重点关注更长的任务时间范围、更多变的情况和真正的生态展示,以研究在直升机领域应用生态界面设计和不同自动化系统的效果。
摘要:鉴于 NASA 的 Artemis 计划即将在低地球轨道 (LEO) 以外执行一系列任务,并可能在月球和火星上建立基地,需要研究深空环境对生物的影响并制定保护措施。尽管自 20 世纪 60 年代以来,许多生物实验都在太空中进行,但大多数实验都是在低地球轨道进行的,而且只持续了很短的时间。这些低地球轨道任务研究了各种模型生物中的许多生物现象,并利用了广泛的技术。然而,鉴于深空环境的限制,未来的深空生物任务将仅限于使用微型技术的微生物。像立方体卫星这样的小型卫星能够使用新型仪器和生物传感器查询相关的太空环境。立方体卫星还为更复杂、更大规模的任务提供了一种低成本的替代方案,并且需要的机组人员支持最少(如果有的话)。已经有几颗立方体卫星部署在低地球轨道,但下一代生物立方体卫星将走得更远。 BioSentinel 将成为美国宇航局 50 年来第一个星际立方体卫星,也是第一个发射到地球磁层以外的生物研究卫星。BioSentinel 是一个自主的自由飞行平台,能够支持生物学并研究辐射对星际深空模型生物的影响。自由飞行器内包含的 BioSensor 有效载荷也是一种适应性强的仪器,可以对不同的微生物和多种空间环境(包括国际空间站、月球门户和月球表面)进行生物相关测量。像 BioSentinel 这样的纳米卫星可用于研究重力减小和空间辐射的影响,并可以容纳不同的生物或生物传感器来回答特定的科学问题。利用这些生物传感器将使我们能够更好地了解太空环境对生物的影响,以便人类可以安全返回深空并比以往走得更远。
william.y.pike.civ@mail.mil 摘要 本研究的目的是确定在对不同性别的士兵应用战术战斗伤亡护理时是否存在犹豫。作为美国陆军作战能力发展司令部 - 士兵中心、模拟和训练技术中心 (CCDC-SC STTC) 执行的一项研究的一部分,开发了允许以男性为中心的人类患者模拟器复制以女性为中心的模型的覆盖层。这些“性别改装套件”旨在支持战斗医务人员和战斗救生员的训练。在测试这些原型时,观察到了明显的犹豫,但未进行定量测量(Mazzeo 等人,2018 年)。本研究旨在通过调查将战术战斗伤亡护理应用于男性和女性训练模拟人体模型的相关表现来量化这种先前观察到的犹豫。在 2(伤亡者性别)x 2(参与者性别)的受试者内研究设计中,参与者需要识别并治疗每个人体模型胸部区域的两处枪伤。相关测量包括反应时间、暴露时间(参与者将手放在伤亡者身上到伤口完全暴露的时间,以秒为单位)、暴露成功率(胸部两处伤口完全暴露)、总时间(反应时间、暴露时间和治疗时间的总和)和准确性。暴露时间结果显示出令人担忧的趋势,表明存在对治疗女性伤亡者的犹豫[测试区一(女性 M = 42.8,SD = 35.80;男性 M = 37.85,SD = 44.63);测试区二(女性 M = 21.27,SD = 35.16;男性 M = 12.94,SD = 31.94)]。此外,胸腔密封应用的常见错误和参与者在评估后调查中所做的轶事陈述表明需要进行针对性别的医疗培训。实施针对性别的医疗培训可以确保所有士兵都知道如何并感到舒适地执行医疗程序,无论性别如何,可以减少因训练不足而导致的战斗死亡。
热带太平洋 (McPhaden 等人1998),最重要的是,原型耦合海洋-大气模型 (Zebiak 和 Cane 1987) 成功预测了厄尔尼诺现象。反过来,这些发展又得到了非常成功的国际热带海洋全球大气 (TOGA) 计划 (世界气候研究计划 1985) 的推动。季节性预报显然对社会各阶层都有价值,无论是出于个人、商业还是人道主义原因 (例如,Stern 和 Easterling 1999;Thomson 等人2000;Pielke 和 Carbone 2002;Hartmann 等人2002a;Murnane 等人2002)。然而,尽管大气-海洋耦合产生了可预测的信号,但上层大气本质上是混乱的,这意味着预测的天气的日常演变必然对初始条件敏感(Palmer 1993;Shukla 1998)。在实践中,这种敏感性的影响可以通过整合耦合海洋-大气模型的预测的向前时间集合来确定,集合中的各个成员因大气和底层海洋的起始条件的微小扰动而不同。集合的相空间弥散给出了流动潜在可预测性的可量化流动相关测量。但是,如果初始条件的不确定性是季节性预报集合中唯一的扰动,那么由此得出的可预报性测量结果将不可靠;原因是模型方程也是不确定的。更具体地说,尽管气候演变方程在偏微分方程的层面上很容易理解,但它们作为一组有限维常微分方程的表示,在数字计算机上进行积分时,不可避免地会带来不准确性。原则上,这种不准确性可以向上传播,并影响模型所预测的整个尺度范围。目前,没有潜在的理论形式主义可以用来估计模型不确定性的概率分布(见 Palmer 2001);因此,必须寻求一种更务实的方法。其中一种方法依赖于这样一个事实,即全球气候模型是在不同的气候研究所独立开发的。由这种准独立模型组成的集合称为多模型集合。多模型集合能够比单一模型集合产生更可靠的季节性气候风险概率预报,这一点已由季节至年际时间尺度气候变化预测 (PROVOST) 项目资助
•如果无法完成臀部/脊柱或臀部/髋关节,或者个人的重量限制; •甲状旁腺功能疗法,前臂对于诊断至关重要。在小儿个体中,首选对全身钙的测量,因为它有助于减少骨骼生长的个体。这适用于未骨骼成熟的小儿个体,如未限制生长板(例如15岁以下)所记录的那样。指示时,理想情况下应使用同一机器在同一设施中进行轴向中央位点的重复DXA。BMD结果之间的差异可能仅仅反映了测试测量的固有变异性;因此,测试设施必须计算相关测量位点的最小显着变化(LSC),以确定代表实际变化的差异幅度。这是使用设施的常规技术专家,经过治疗的个人和设备确定的。超声密度测定法是一项基于办公室的技术。与骨质疏松骨相比,正常骨表现出更高的超声波衰减,并且与通过骨骼的波的速度更大有关。超声密度测定法没有辐射暴露,并且可以在办公室设置中购买机器。尚不清楚该技术是否可以用来预测对药物治疗的反应(即减少骨折)。定量计算机断层扫描取决于钙化组织对电离辐射的差异吸收,仅用于中心测量。与DXA相比,定量计算机断层扫描较少可用,并且与辐射暴露相对较高和相对较高的成本相关。对先前获得的骨盆的临床计算机断层扫描的分析可能提供了一种评估生物力学骨强度的替代方法。单光子和双光子吸收率和放射学吸收率现在很少使用,并且可能被认为已过时。加利福尼亚州医疗政策的蓝盾:椎骨骨折评估用光密度计的评估解决了使用DXA筛查椎骨骨折的筛查,该骨折被认为是研究的。进行骨密度评估的决定应基于个人的断裂风险特征和骨骼健康评估。除了年龄,性别和BMD外,世界卫生组织(WHO)骨折风险评估工具中包括的风险因素是:
加工和储存(指导值) 混合 称量(按重量或体积)Araldite 树脂和硬化剂。 将硬化剂添加到 Araldite 树脂中;确保将所需量的硬化剂转移到树脂中。 充分搅拌直至混合完成。 混合过程中的空气夹带会导致固化树脂中出现孔隙。 在真空下或计量混合机中混合是防止空气夹带的最有效方法。 或者,可以在真空室中对静态树脂 - 硬化剂混合物进行脱气——允许至少 200% 的空隙以使泡沫膨胀。 固化 混合树脂和硬化剂引起的化学反应会产生放热。 达到的峰值温度由起始温度和铸件的大小和形状决定。 未填充的树脂系统仅适用于制造重量不超过约 500 克的铸件。 生产大型铸件时,应添加矿物填料来散热并抑制放热反应。生产非常小的铸件或薄层时,放热反应非常少,因为产生的热量会迅速消散。因此固化会延迟,铸件表面可能仍然发粘。在这种情况下,应使用 40°C – 60°C 的红外加热器或烤箱进行完全固化。铸造厚部件时,需要特别小心,避免放热温度过度上升。除非对按照特定设计制造的铸件进行初步试验,并在指定的模具中不会产生不可接受的放热效应,否则不应使用短时间高温固化程序。要确定交联是否已完成以及最终性能是否最佳,必须对实际物体进行相关测量或测量玻璃化转变温度。客户制造过程中的凝胶和固化周期不同,可能导致交联程度不同,从而导致不同的玻璃化转变温度。储存条件将组件存放在室温干燥处,密封在原装容器中。在这些条件下,保质期将与标签上注明的有效期相对应。在此日期之后,产品只能在重新分析后进行处理。部分空的容器应在使用后立即盖紧。有关废物处理和火灾时分解的危险产物的信息,请参阅这些特定产品的材料安全数据表 (MSDS)。
木质纤维素生物质是新兴生物经济的主要原料之一,将在替代石油基化学品和材料方面发挥关键作用,并通过提供可再生、碳中性的能源来帮助应对全球变暖。然而,由于其化学和结构复杂性,将木质纤维素转化为商品和高价值产品需要结合物理、生物和化学过程,并更好地了解其在不同规模上的组成和结构,以使这种转化高效且具有经济竞争力。重要的是,木质纤维素转化还可以为市场带来新颖和可持续的化学品,从而带来新的应用和新的行业,以取代化石碳的开采和燃烧。特别是,利用木质素和纤维素和半纤维素中的芳香分子可以生产生物基溶剂、表面活性剂、增塑剂、营养和化妆品的功能性添加剂以及救命药物。除了这些种类繁多的化学品外,从木质纤维素生物质中分离出的纤维素纤维和颗粒也越来越多地用于生产复合材料。总体而言,本研究主题旨在说明互补方法在解决不同形式木质纤维素生物质的解构问题以及将其转化为有价值的生物基可再生产品所需的各种工艺方面的重要性。本研究主题包括 16 篇原创论文:14 篇研究论文、一篇综述和一篇小型综述,专门介绍使用先进的化学、物理和生物化学途径对生物基化学品和材料进行改性、表征和制备。Glasser 的综述专门介绍木质素在材料中的应用,介绍了如何通过化学改性轻松定制这组芳香族生物聚合物以获得特定性能,以及如何通过木质素化学功能化等相容化策略克服未改性木质素在制造先进材料时通常遇到的限制。 Zoghlami 和 Paës 的这篇小型评论介绍了化学和结构因素对木质纤维素生物质不稳定性的影响以及评估这些因素的最先进技术的最新调查,以及预测水解难易程度的最新光谱和水相关测量。除了这两篇评论文章外,还有几篇文章详细介绍了预处理如何促进生物质加工中的后续反应。Sipponen 和 Österberg 评估了氨水在将木质素从热液预处理的小麦秸秆中分离出来之前对木质素的影响。