热带太平洋 (McPhaden 等人1998),最重要的是,原型耦合海洋-大气模型 (Zebiak 和 Cane 1987) 成功预测了厄尔尼诺现象。反过来,这些发展又得到了非常成功的国际热带海洋全球大气 (TOGA) 计划 (世界气候研究计划 1985) 的推动。季节性预报显然对社会各阶层都有价值,无论是出于个人、商业还是人道主义原因 (例如,Stern 和 Easterling 1999;Thomson 等人2000;Pielke 和 Carbone 2002;Hartmann 等人2002a;Murnane 等人2002)。然而,尽管大气-海洋耦合产生了可预测的信号,但上层大气本质上是混乱的,这意味着预测的天气的日常演变必然对初始条件敏感(Palmer 1993;Shukla 1998)。在实践中,这种敏感性的影响可以通过整合耦合海洋-大气模型的预测的向前时间集合来确定,集合中的各个成员因大气和底层海洋的起始条件的微小扰动而不同。集合的相空间弥散给出了流动潜在可预测性的可量化流动相关测量。但是,如果初始条件的不确定性是季节性预报集合中唯一的扰动,那么由此得出的可预报性测量结果将不可靠;原因是模型方程也是不确定的。更具体地说,尽管气候演变方程在偏微分方程的层面上很容易理解,但它们作为一组有限维常微分方程的表示,在数字计算机上进行积分时,不可避免地会带来不准确性。原则上,这种不准确性可以向上传播,并影响模型所预测的整个尺度范围。目前,没有潜在的理论形式主义可以用来估计模型不确定性的概率分布(见 Palmer 2001);因此,必须寻求一种更务实的方法。其中一种方法依赖于这样一个事实,即全球气候模型是在不同的气候研究所独立开发的。由这种准独立模型组成的集合称为多模型集合。多模型集合能够比单一模型集合产生更可靠的季节性气候风险概率预报,这一点已由季节至年际时间尺度气候变化预测 (PROVOST) 项目资助
主要关键词