列中阶段缺乏翻译顺序,但具有方向顺序。nematic阶段已经在各种系统中发现,包括液晶,相关材料和超导体。在这里,我们报告了磁性列相,其中基部成分由磁性螺旋组成。我们使用谐振软X射线散射直接探测与磁性螺旋相关的阶参数,并找到具有复杂时空特征的两个不同的列型相。使用X射线相关光谱法,我们发现两个列型相之间的相边界附近,波动在多个不同的时间尺度上共存。我们的微磁模拟和密度功能理论计算表明,波动随着磁性螺旋的重新定位而发生的,表明自发对称性破裂和新的自由度的出现。我们的结果为表征外来阶段的框架提供了一个框架,可以扩展到广泛的物理系统。
近年来,许多具有可重新配置功能的创新微/纳米光学设备(MNOD)致力于探索创新的微/纳米光学设备(MNOD),这是非常重要的,因为对下一代光子系统的需求逐渐增加。幸运的是,相变材料(PCM)为实现这一目标提供了极具竞争力的途径。相变引起光学,电性能或形状中材料的显着变化,从而引发了极大的研究兴趣,以应用PCM来重新确定可耐配合的微型/纳米光学设备(RMNODS)。更具体地,基于PCM的RMNOD可以与按需或自适应举止与入射光相互作用,从而实现独特的功能。在这篇综述中,基于阶段过渡的rmnods是系统地汇总的,并从材料,相变机制到应用程序进行了全面概述。强烈引入了由三种典型PCM组成的可重新配置的光学设备,包括葡萄球核化合物,过渡金属氧化物和形状记忆合金,突出了可逆状态开关和光学响应的巨大对比度以及由相转换产生的指定实用性。最后,给出了整个内容的全面摘要,讨论了挑战,并在将来概述了基于PCMS的RMNOD的潜在发展。
摘要:使用基于范德华校正的密度功能理论(Rev-VDW-DF2函数),使用使用机器学习的原子质势模拟了温度诱导的相变和离子电导率。阶 - 疾病相变的模拟温度,晶格参数,扩散,离子电导率和激活能与实验数据非常吻合。我们对Li 2 B 12 H 12的模拟发现了[B 12 H 12] 2-阴离子的重新定位运动的重要性。在有序的α-相(t <625 K)中,这些阴离子具有明确的方向,而在无序的β-相(t> 625 K)中,它们的方向是随机的。在空缺系统中,观察到其完整的旋转,而在理想的晶体中,阴离子显示有限的vabrational运动,表明没有动态无序的相位过渡的静态性质。使用机器学习间的原子势使我们能够以长(纳秒尺度)分子动力学研究大型系统(> 2000个原子),从头开始质量。关键字:密度功能理论,机器学习间原子潜能,固体电解质,相变,离子电导率
使用安装在 J-PARC 材料与生命科学实验设施的单晶衍射仪 SENJU (BL18) 和超高分辨率粉末衍射仪 SuperHRPD (BL08) 收集飞行时间中子衍射数据。如图 1(a) 所示,在 MASnBr 3 的五个相中观察到的衍射图案彼此明显不同,表明晶体结构通过四个相变依次变化。该结果需要重新考虑 g、d 和 e 相的结构,其中 b - g 相和 d – e 相之间没有观察到明显的结构变化[1]。对于 MASnI 3 ,如先前报道的那样[2][3],识别出三个具有不同结构的相(图 1(b))。最低温相的结构仍然不确定,但 b 相和 g 相之间衍射图案的剧烈变化表明结构对称性从四方晶系到三斜晶系显著降低。立方a相单晶结构分析表明MA分子的质心位于立方晶胞中心之外,用最大熵法合成的分子核密度沿立方轴呈现各向异性分布。这些趋势在MASnBr 3 中表现得更为明显,表明X = Br晶体中有机-无机相互作用的影响更强。
我们证明了非型型超级级别相变的出现和在腔量子量子电动力学系统中的新型多政治性,其中两级原子与两个窃窃私语模式微地位的两种反向传播模式相互作用。腔体以一定角度的速度旋转,并通过单向参数抽水χ22非线性挤压。腔旋转和方向挤压的组合导致非reciprocal的一阶和二阶超级相变。这些过渡不需要Ultrastrong Atom-Field耦合,并且可以通过外部泵场轻松控制。通过对哈密顿系统系统的完整量子描述,我们在相图中确定了两种类型的多个智力点,这两种点都表现出可控的非交流点。这些结果为在光结构系统中对超级级过渡和多政治行为的全面操纵打开了新的门,并在工程各种集成的非认定量子设备方面进行了潜在应用。
有效的磁化控制是磁学和自旋电子学的核心问题1-8。特别是,对于具有非常规功能的自旋电子器件,对范德华 (vdW) 磁体中磁态的多功能操控的需求日益增加9-13。已经实现了通过自旋扭矩对 vdW 磁体进行磁化切换的电控制,但在没有外部磁场的情况下铁磁状态到反铁磁状态之间的电流诱导相变尚未得到证明12,14,15。在这里,我们报道了电流诱导的 vdW 铁磁体 Fe 5 GeTe 2 中的磁相变,从而产生了巨磁电阻。基于磁输运测量和相关理论分析,我们证明该转变是通过平面电流诱导的跨 vdW 间隙电压差在各层中依次发生的。 34 Fe 5 GeTe 2 中磁相的电流可调性为磁性能的电控制开辟了一条道路,扩展了我们将 vdW 磁体用于各种自旋电子器件应用的能力。36
Majorana国家的编织表明其非亚洲交换统计数据。编织的一种实现需要控制三台式设备中所有主要州之间的成对耦合。为了:: to:拥有绝热设备,需要对所需的对耦合才能充分:::::::::::::足所以:很大,并且不需要的耦合即可消失。在这项工作中,我们在两维电子气体中设计和模拟了三台式设备,重点是连接三个主要状态的正常区域。我们使用优化方法在多维电压空间中找到设备的运行状态。使用优化结果,我们通过绝热地耦合不同的主要群体状态,而无需缩小拓扑间隙,从而模拟了编织实验。然后,我们评估在三台设备中编织的可行性,以实现不同的形状和无序强度。
这项研究的结果于12月20日发表在12月20日的《英国杂志NPJ量子材料》上。标题:“铁电式拓扑半学Sraubi中的超导性”作者:hidefumi takahasi,Tomohiro Sasaki,Akitoshi Nakano,Nakano,Kazuto Akiba,Masayuki Akiba,Masayuki takahashi,Takahashi https://doi.org/10.1038/s41535-023-00612-4
2,其中内层相互作用是排斥的,并且层间相互作用很有吸引力。我们在圆环上进行精确的对角度(ED)计算,以研究分离距离d / l b时的相变。d c / l b = 0处的临界点。68的特征是变性和能量水平的交叉。在D / L B 成对相关函数表明具有相反伪旋转的电子在𝑟=0。时相关。成对相关函数表明具有相反伪旋转的电子在𝑟=0。我们发现了由结合对组成的激子条带相。铁磁基态被强大有效的有吸引力的潜力破坏。电子复合 - fermion(ECF)和一个孔复合费用(HCF)紧密结合。在D / L B> D C / L B区域中,观察到从D→D C极限到大D极限的交叉。电子和孔复合液体(CFL)分别通过相对的相对的复合材料(CF)实现。
根据 DOE 公共访问计划,本文件代表作者经过同行评审并被接受的手稿。文章的出版版本可从相关出版商处获得。