光纤维介于最常见的植入剂范围内,用于在神经系统中发光,用于光学集和红外神经刺激应用。逐渐变细的操作纤维可以提供均匀的光输送到大容量和空间分辨的照明,同时最少具有侵入性。然而,现在使用锥度用于神经应用的目前仅限于二氧化硅光纤维,其较大的年轻人的模型可能会在慢性设定中引起有害的异物反应。在这里,我们介绍了基于聚合物光纤维(POFS)的植入植入物的制造和优化。After numerically determining the optimal materials and taper geometry, we fabricated two types of POFs by thermal fiber drawing.通过化学蚀刻剂的化学蚀刻来实现锥度的制造,为此,已经测试过文献中的几种溶剂。还研究了不同参数对蚀刻过程和所获得的锥度质量的影响。在脑幻像中最终测试了产生的高质量基于锥度的植入物的大量照明体积。
DOI: https://dx.doi.org/10.30919/es1200 Anti-swelling Zwitterionic Nanocomposite Hydrogels with Biocompatibility as Flexible Sensor for Underwater Application Zhicheng Jiang, 1,2 Ruicheng Sha, 1 Yunbo He, 1 Mengshuang Wang, 1 Wenjing Ma, 3 Shuting Gao, 2 Mengni Zhu,1 Yue Li,1 Mengying Ni 1和Min Xu 1,*摘要水下活动的增加驱动了对水下柔性传感器的需求,这些传感器可以实时检测到人类和环境的各种信号,以提高工作效率并确保安全。但是,由于水中的水凝胶肿胀以及传感器的不友好性,水下传感器的制造仍然具有挑战性,这对用户和应用程序环境构成了重大风险。这里是一种基于水凝胶的传感器,由聚[2-(甲基丙烯氧基)乙基]二甲基 - (3-硫丙基丙基)氢氧化铵和细菌纤维素纳米纤维组成,具有自我粘附,生物相容性,生物相容性,以及使用环境友好友好的方法制造。zwitterionic官能团之间的静电相互作用(带正电荷的-r 3 n +组和带负电荷的 - SO 3-组)在水生环境中赋予水凝胶具有出色的抗静止行为。由于这些特征,水凝胶传感器能够监测空气和水下环境中的运动。基于水凝胶传感器,开发了一个智能通信系统,以促进水中的信息传输。此外,水凝胶传感器的出色生物相容性突出了其对用户和环境的安全性,展示了其对电子皮肤的巨大希望。因此,具有抗静止功能的生物相容性水凝胶传感器为促进可穿戴设备的开发提供了有希望的途径。
1 德国慕尼黑路德维希马克西米利安大学心脏外科系/儿科及先天性心脏外科分部,2 德国慕尼黑欧洲儿科心脏中心 (EKHZ),3 德国慕尼黑德国心脏中心慕尼黑工业大学先天性及儿科心脏外科系,4 德国慕尼黑路德维希马克西米利安大学心脏外科系,5 德国慕尼黑路德维希马克西米利安大学慕尼黑心脏联盟 (MHA) — DZHK 心血管疾病流行病学及预防系,6 德国慕尼黑路德维希马克西米利安大学儿科心脏病学及重症监护分部,7 德国巴特恩豪森北莱茵-威斯特法伦州心脏与糖尿病中心胸心血管外科诊所
FDA 发布本指南草案,以描述用于医疗器械生物相容性评估的化学分析推荐方法。本指南中提供的建议旨在提高分析化学研究的一致性和可靠性,并基于 FDA 评估作为上市前提交文件的一部分提交的此类研究的经验,以证明器械的生物相容性。但是,进行化学表征的替代方法可能合适。此外,生物相容性评估所需的信息和/或测试类型可能因器械特性和预期用途而异。化学表征是制造商在制定器械整体生物相容性评估策略时可以考虑的一种方法。鼓励制造商在进行器械生物相容性评估的化学表征时,使用适合其特定目的的方法,并考虑到本指南文件中讨论的注意事项。
摘要 本文使用有限元建模模拟研究了羟基磷灰石涂层在全听小骨重建假体 (TORP) 中的应用,以提高这些用于中耳植入的假体的生物相容性和机械性能。我们重点评估了生物相容性材料,特别是聚醚醚酮 (PEEK) 和钛,通过分析它们在模拟条件下的机械行为。结果表明,PEEK 的机械性能几乎与钛相当,在中耳环境中表现出优异的稳定性和弹性。与钛相比,PEEK 具有几个关键优势,包括更容易制造、更容易获得以及羟基磷灰石涂层的应用流程简化。这些好处表明,PEEK 可以成为用于中耳假体的钛的一种非常有效的替代品。这项研究的结果凸显了 PEEK 在改善中耳植入物的设计和功能方面的潜力,为该领域未来的研究和开发提供了一个有希望的方向。通过利用 PEEK 的优势,我们可以提高中耳假体装置的有效性和可及性,最终使需要此类干预的患者受益。
这项研究介绍了一种新的方法,用于使用人工神经网络(ANN)和响应表面方法(RSM)进行生物相容性聚乳酸(PLA)/聚甲基甲基丙烯酸酯(PMMA)混合。目标是优化PMMA含量,喷嘴温度,栅格角度和打印速度,以增强形状记忆力和机械强度。材料,PLA和PMMA是融化的,并使用基于颗粒的3D打印机打印4D。差异扫描量热法(DSC)和动态机械热分析(DMTA)评估混合物的热行为和兼容性。ANN模型与RSM模型相比,ANN模型表现出了出色的预测准确性和概括能力。实验结果显示,形状回收率为100%,最终拉伸强度为65.2 MPa,明显高于纯PLA。用优化参数打印的生物螺旋螺旋体展示了出色的机械性能和形状的记忆行为,适用于生物医学应用,例如骨科和牙科植入物。本研究提出了一种用于4D打印PLA/PMMA混合物的创新方法,强调了它们在创造先进的高性能生物相容性材料方面的潜力。
石墨烯是一种由单层碳原子组成的二维蜂窝状晶格。它是各种尺寸石墨材料的基础,包括富勒烯、纳米管和石墨。过去 60 年来,人们对石墨烯进行了理论研究 [ 2 ]。该材料的独特性质包括较大的比表面积(~ 2600 m 2 /g)、较高的电子迁移率(200,000 cm2/Vs)、较高的热导率(3000-5000 Wm/K)、极高的光学透明度(97.4%)和出色的机械强度(杨氏模量为 1 TPa)[ 3 ]。石墨烯出色的电子迁移率使其非常适合需要快速响应率的半导体器件。其优异的导电性和高光学透明度使其可用作光子器件中的透明导电层。此外,石墨烯在防腐涂层、传感器技术、可穿戴电子产品、柔性显示器、太阳能发电、加速DNA等各个领域都显示出巨大的潜力
用于收集生物电信号的柔软且灵活的设备的开发正在为可穿戴和可植入应用获得动力。在这些设备中,有机电化学晶体管 (OECT) 因其低工作电压和大信号放大而脱颖而出,能够转换微弱的生物信号。虽然液体电解质已证明在 OECT 中有效,但它们限制了其工作温度,并且由于潜在的泄漏而对电子封装构成挑战。相反,固体电解质具有机械灵活性、对环境因素的稳健性以及桥接刚性干电子系统和柔软湿润生物组织之间界面的能力等优势。然而,很少有系统表现出与各种最先进的有机混合离子电子导体 (OMIEC) 的通用性和兼容性。本文介绍了一种高拉伸性、柔韧性、生物相容性、自修复性的明胶基固态电解质,该电解质与 p 型和 n 型 OMIEC 通道兼容,同时保持高性能和出色的稳定性。此外,这种非挥发性电解质在高达 120°C 的温度下仍保持稳定,即使在干燥环境中也表现出高离子电导率。此外,还展示了一种基于 OECT 的互补逆变器,其归一化增益创下了 228 V − 1 的最高纪录,相应的静态功耗超低为 1 nW。这些进步为从生物电子学到节能植入物的多种应用铺平了道路。
摘要 有多种医疗应用利用生物材料来固定组织、输送药物和制造生物医学设备。本文对生物材料进行了相关分析,讨论了它们的分类、特点、生物相容性问题以及各种医疗用途或应用。本文将生物材料分为聚合物、陶瓷、金属和复合材料,并详细解释它们,重点介绍适合特定医疗目的的特定特性。根据本文,聚合物是一种适应性强的材料,可用作组织工程支架、人造血管或水性介质中的药物载体。本文谈到陶瓷时,陶瓷因其非凡的机械性能和生物活性而常用于骨替代材料。基本上,所有陶瓷(如磷酸三钙或羟基磷灰石)的成功率都较高,因为它们的矿物质含量高,使其成为牙科植入物的理想材料。钛、钴铬合金或不锈钢等金属已被广泛使用,因为它们具有很高的机械强度和耐腐蚀性,而这通常是骨内牙科植入物所必需的。因此,生物相容性在生物材料设计中被优先考虑,要求材料能够安全、舒适地与生物系统结合。事实上,生物材料技术的进步已经推动了创新材料的开发,通过表面调整和仿生涂层等技术来提高其生物相容性。所有这些技术在该领域都取得了巨大的发展,并对医疗行业有用。此外,本文还阐明了这些生物材料如何在医疗器械的机械开发中发挥重要作用,其中包括导管、植入式装置、药物输送系统和骨科植入物等。Ύ 的主要用途 通讯作者:bhavinprajapati.me@silveroakuni.ac.in。
随着纳米技术和创新材料的进步,氧化石墨烯纳米颗粒(GONP)由于其独特的物理化学特征而引起了多种类型的纳米材料的关注。但是,科学和工业层面的用法也引起了他们与生物系统毒理学相互作用的关注。理解这些相互作用对于制定针对成员在生物医学和环境技术等各个领域的应用指南和建议至关重要。本综述提供了与多个细胞系有关的生物学过程的重要见解和深入分析,包括人类全血培养物,树突状细胞,巨噬细胞和多个癌细胞系。在这项工作中强调了氧化石墨烯纳米颗粒与免疫系统之间的复杂相互作用,这揭示了一系列免疫毒性后果,例如炎症,免疫抑制,免疫抑制,过度敏感性,自身免疫性,自身免疫性和细胞不当。此外,还针对小鼠和斑马鱼等体内模型强调了免疫毒性作用,洞察纳米颗粒的细胞毒性。这项研究为研究人员,政策制定者和工业家提供了宝贵的评论,以了解和利用成生者的有益应用,并对人类健康和环境进行控制。