可持续性目前是材料,产品开发和应用开发的主要要求。“可持续生物基础材料:生物医学和工程应用”的书提供了与基于生物的材料有关的多种知识,包括来源,合成和财产。基于生物的聚合物合成,属性和应用。本书专注于基于生物的主要材料,例如纤维素,壳聚糖,丝绸和相关的制造技术和应用。此外,文本还显示了基于生物的材料的工程和生物应用,这将彻底,清晰地显示出读者的思想,以发现和将新报告的技术转化为产品和服务。本书将对基于生物材料的研究生和研究生,工程师,技术人员,医生和研究人员提供帮助和有用。第1-6章全面包含了与基于生物的材料有关的更新信息。生物医学应用,例如矫形器,药物递送,组织工程,可吸收缝合线和传感器。基于燃料电池,能源存储和包装等生物基材料的高级应用是与第12-14章中最近作品的确切描述的。除了在第14-16章中讨论了生物基材料作为生物炼油厂,生物润滑剂,膜和吸附剂的先驱的重要性和应用。它包含有关高级生物材料及其制造技术的细节。文本解决了基于生物材料的研究中合适的数学建模和仿真的重要性。它为读者提供了深入的知识,以便在研究实验室和行业中实施的高级材料和制造技术的帮助,以更轻松,快速,快速,可靠的方式来理解矫形器,牙齿植入物,伤口愈合,抗菌,生物相容性问题。本书适合广泛的读者,包括学者,从业人员,研究生以及在生物医学领域工作的研究人员。
化疗无法消灭癌细胞,主要是因为药物不能选择性地在肿瘤部位积聚,而这也会影响健康细胞。在本研究中,我们研究了磁铁矿纳米结构脂质载体 (NLC),以便将姜黄素靶向递送到乳腺癌细胞中。采用共沉淀法,在碱性介质中将 FeCl 2 和 FeCl 3 以适当的比例混合,制备超顺磁性氧化铁纳米粒子 (SPION)。所得磁流体非常稳定且具有高磁性。为了制备含有 NLC (NLC-SPION)、十六烷基棕榈酸酯和鱼肝油的 SPION,分别使用 Tween 80 和 span60 作为固体脂质、液体脂质、表面活性剂和助表面活性剂。将抗癌药物姜黄素负载于NLC-SPIONs(CUR-NLC-SPIONs)中,评价其粒径、zeta电位、多分散指数(PDI)、药物包封率、载药量和热稳定性等特性。结果表明,CUR-NLC-SPIONs的平均粒径为166.7±14.20nm,平均zeta电位为-27.6±3.83mv,PDI为0.24±0.14。所有制备的纳米粒子(NPs)的包封率为99.95±0.015%,载药量为3.76±0.005%。通过透射电子显微镜(TEM)进行形态学研究,表明NPs呈球形。 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 测定细胞活力证明,合成的 CUR-NLC-SPION 对人类乳腺癌细胞具有比游离姜黄素更好的细胞毒活性。这种新型药物输送系统受益于超顺磁性,可作为开发新型生物相容性药物载体的合适平台,并有潜力用于靶向癌症治疗。
本卷中的十三篇论文写于 1934 年至 1946 年之间,包括已故芝加哥大学亨利·西蒙斯教授的大部分主要著作。其中前六篇论文包含了作者立场的更一般性陈述。他将其描述为“自由市场自由主义”,其中国家有责任“维持一种法律和制度框架,使竞争能够有效地发挥控制作用”。为此,他呼吁彻底简化公司形式,严格限制规模、活动、资本结构以及广告和销售技巧。通过竞争力量进行控制的最大威胁是劳工组织的增长,西蒙斯教授认为这与资本主义或社会主义都不相容。“垄断而非竞争”决定的工资政策阻碍了投资和扩张,并将较差的劳动力挤入相对不具生产力的领域。在这方面,有人指出,《公平劳动标准法》“旨在并主要用来阻止纺织生产和纺织资本向南部各州迁移”。作者认为,经济不平等问题可以通过征收遗产税和所得税来解决。西蒙斯教授认为,民主必须关注消费者的利益,他指出,生产者和社区之间的利益冲突必须通过有效的群体间竞争来调和,而不是通过对特定生产者群体负责的政府机构从上而下行使权力来调和。这代表了对政治控制的潜在恐惧。在接下来的四篇文章中,重点是货币财政和金融安排。稳定的立法规则、通过将公共债务重新转换为公债和货币来简化公共债务结构以及通过分离银行的存款和贷款设施来部分消除短期债务将提供竞争性经济敏感的控制手段。专利改革和取消关税是西蒙斯教授三篇结论性文章中建议的商业政策之一,其中最后一篇是对贝弗里奇计划的“无情解读”。
酶联交联是一种聚合途径,依赖于酶作为裂解或形成共价键的试剂。酶是高度底物特异性的,具有短反应时间,用于催化交联的同时抑制潜在的毒性侧反应,这使得这些交联方法比其化学对应物更有效(Bae等,2015; Hu等,2019b)。这些反应也具有细胞相容,无创,并通过控制酶浓度来良好地控制水凝胶形成(Sperinde&Griffith,1997)。酶联交联是一种在组织工程和再生医学中使用的水凝胶的有趣方法,因为它可以在温和的生理条件下提供快速的凝胶化(通常不到10分钟),使其适合于体内形成水凝胶在内的生物学应用(Hu等,2019b; Mohammed&Murphy; Mohammed&Murphy,2009; Moreira; Moreira teixeira exeira and exeira。此外,通常可以通过修改温度,pH或离子强度等外部因素来控制酶活性(Claaßen等,2019; Heijnis等,2010)。酶已用于催化反应。使用黄嘌呤氧化酶将黄牛蛋白氧化为白细胞蛋白酶(Kalckar等,1950)。最早描述的酶用于水凝胶交联应用的一种历史可以追溯到1990年代后期,当时Sperinde和Griffith使用经凝集丁胺酶通过交联功能化的多型(乙烯甘氨酸)(PEG)(PEG)(PEG)(PEG)和裂解的polypeptepepte&Grifififififififf和1997的盐酸和盐酸盐(Sperififififififf)来形成水凝胶网络。从那时起,转透明酶一直是组织工程中最广泛使用的酶,以及辣根过氧化物酶(HRP)。以后的酶通过将过氧化氢(H 2 O 2)作为氧化剂催化苯酚或苯胺衍生物的偶联(Ren等,2017)。这种反应可以轻松调整胶凝时间,机械强度,降解动力学和随后水凝胶的多孔结构,通过控制成分的浓度(Bae等,2015; Cheng等,2018)。酶线交联的水凝胶的多功能性和可调性转化为使用
承担这些分歧的全球负担。[1,2]新的且高度特定的药物输送工具将有助于更好地理解复杂的神经生物学环境,并为高度局部和精确的药物输送技术铺平道路。为了最佳工作,此类设备需要达到良好的化学和生物靶特异性,同时限制了生物相容性问题或相当的副作用。如果将这些设备作为最小化的独立探针实施,则可以轻松地操纵它们以靶向特定细胞,或与不同的实验设置和感应技术结合使用,以促进广泛的诊断和治疗能力,尤其是在深层组织/有机位置。[3]在这里,我们比较了两种高精度药物输送技术,基于压力的微流体和电离基质的能力和局限性。在微流体中,药物运输受到小型流体通道中的液压的高度控制。[4,5]通过连接几个流体源和微生物流体通道,可以轻松地进行混合,开关,筛查和递送各种药物。微流体的领域包括从实验室芯片设备到游离的微流体神经探针的多种实验设置。[4,6]其他感兴趣的技术是电离,其中应用电位的调节可以使精确的剂量控制和化学特异性,只要有效的药物或神经递质是积极或负电荷的。[7]最基本的离子基因组件是有机电子离子泵(OEIP)。[8]OEIP基于一个定义明确的和封装的离子交换膜(IEM),将源电解质储存液与目标电解质分开(通常称为“离子通道”)。从广义上讲,IEM的选择性取决于固定电荷的固有极性,其电荷程度以及其孔径和密度。通过IEM离子通道从源储存库中运输,并通过离子的迁移和被动扩散来积极实现目标电解质。通过改变IEM上的施加电位,可以通过电子控制迁移离子输送率,并且可以估算出施加的电子电流的直接对应关系,并且可以估算传递的药物数量。平面OEIP设备已成功地用于各种神经系统应用,例如,通过输送γ-氨基丁酸来抑制癫痫表现活性。
木质纤维素生物质是新兴生物经济的主要原料之一,将在替代石油基化学品和材料方面发挥关键作用,并通过提供可再生、碳中性的能源来帮助应对全球变暖。然而,由于其化学和结构复杂性,将木质纤维素转化为商品和高价值产品需要结合物理、生物和化学过程,并更好地了解其在不同规模上的组成和结构,以使这种转化高效且具有经济竞争力。重要的是,木质纤维素转化还可以为市场带来新颖和可持续的化学品,从而带来新的应用和新的行业,以取代化石碳的开采和燃烧。特别是,利用木质素和纤维素和半纤维素中的芳香分子可以生产生物基溶剂、表面活性剂、增塑剂、营养和化妆品的功能性添加剂以及救命药物。除了这些种类繁多的化学品外,从木质纤维素生物质中分离出的纤维素纤维和颗粒也越来越多地用于生产复合材料。总体而言,本研究主题旨在说明互补方法在解决不同形式木质纤维素生物质的解构问题以及将其转化为有价值的生物基可再生产品所需的各种工艺方面的重要性。本研究主题包括 16 篇原创论文:14 篇研究论文、一篇综述和一篇小型综述,专门介绍使用先进的化学、物理和生物化学途径对生物基化学品和材料进行改性、表征和制备。Glasser 的综述专门介绍木质素在材料中的应用,介绍了如何通过化学改性轻松定制这组芳香族生物聚合物以获得特定性能,以及如何通过木质素化学功能化等相容化策略克服未改性木质素在制造先进材料时通常遇到的限制。 Zoghlami 和 Paës 的这篇小型评论介绍了化学和结构因素对木质纤维素生物质不稳定性的影响以及评估这些因素的最先进技术的最新调查,以及预测水解难易程度的最新光谱和水相关测量。除了这两篇评论文章外,还有几篇文章详细介绍了预处理如何促进生物质加工中的后续反应。Sipponen 和 Österberg 评估了氨水在将木质素从热液预处理的小麦秸秆中分离出来之前对木质素的影响。
Anne Overstreet 生物农药和污染防治部(7511P) 环境保护署农药计划办公室 1200 Pennsylvania Ave. NW 华盛顿特区 20460–0001 事由:卷宗编号 EPA–HQ–OPP–2019–0508 2020 年 12 月 8 日 我谨代表下列农民、牧场主、合作社、零售商、科学家、植物育种者、种子生产者和共同监管者,代表美国广泛而多样的农业利益相关者,感谢有机会就拟议规则“农药;源自新技术的某些植物内保护剂 (PIP) 的豁免”发表评论和反馈意见。我们赞扬美国环境保护署 (EPA) 为实现生物技术监管体系现代化而做出的努力,该署提议将符合条件的“基于通过生物技术创造的性相容植物的 PIP”从《联邦杀虫剂、杀菌剂和灭鼠剂法案》 (FIFRA) 的大部分要求以及《联邦食品药品和化妆品法案》 (FFDCA) 规定的容差设定要求中豁免。我们赞赏拟议规则的总体愿景,但我们也提出了一些建议,我们认为这些建议将有助于 EPA 制定更科学、更基于风险的最终规则。我们还相信,如果这些建议被采纳,将有助于美国保持其在植物生物技术发展方面的全球领导地位。我们在此解释了统一的基线建议,以增强拟议规则,满足我们各利益相关者的需求。许多签署方还将提交单独的意见,提供与各个利益相关者需求相关的具体建议的更多细节,或提出超出本信函内容的建议。拟议的 PIP 豁免的近期历史背景 了解促使 EPA 提议豁免这一范围狭窄、风险较低的 PIP 子集的近期历史背景非常重要。2015 年 7 月,奥巴马总统的总统行政办公室 (EOP) 发布了一份备忘录,提出了对当前生物技术监管框架在某些情况下强加不必要的成本和负担的担忧,这些成本和负担阻碍了中小企业参与市场,限制了公众对监管流程的理解,从本质上抑制了创新。1 该备忘录成立了一个跨部门工作组,以制定“现代化生物技术产品监管体系的国家战略”(国家战略),该战略于 2016 年 9 月发布。除了重申“美国政府的政策是寻求保护健康和环境的监管方法,同时减少监管负担,避免不合理地抑制创新、污名化新技术或制造贸易壁垒”之外,国家战略还指示 EPA 应该“阐明其对源自基因组编辑技术的杀虫产品的态度。”2
随着世界人口的增长和经济工业化的发展,世界各地的能源消耗正在迅速增加。与此同时,保护化石燃料储量的压力和气候变化正在加剧社会能源链,并为扩大世界道路运输机动性部门寻找清洁燃料来源。氢气是生产可再生能源的最重要因素之一,氢气是完美的燃料,它效率最高,在燃料电池中使用时不会产生排放。它无毒,来自可再生资源,也不是温室气体。许多研究表明,氢气可能仅依赖于石油和其他传统燃料。氢气用于燃料电池发电,也可用作内燃机燃料。与内燃机相比,燃料电池具有显著的效率优势,使其成为将氢转化为电能的主要设备。氢是一种无味无色的气体,氢原子仅由一个质子和一个电子组成,它也是宇宙中最重要的元素,但氢在自然界中并不存在,它总是与其他元素结合,例如水是氢和氧的结合体(H2O)。氢不是能源,而是只能从其他能源中产生,因此它被称为一种能源,是一种储存和运输能源的方式。氢是最简单的无味无珊瑚的情况,氢原子仅由一个质子和一个电子组成。它也是宇宙中最重要的。氢存在于许多有机化合物中,如碳氢化合物,它们构成了我们的许多燃料,如汽油、天然气、生物质、甲醇和丙烷。氢可以通过加热从碳氢化合物中分离出来,这一过程称为重整。大多数氢是通过这种方式从天然气中制成的,但天然气是化石燃料,因此在重整过程中释放的二氧化碳加剧了温室效应。氢气的能量非常高,但体积却非常小,因此需要新技术来储存和运输氢气。燃料电池技术仍处于早期开发阶段,需要提高效率和耐用性,也可用于将水分离成氧气和氢气。这个过程被称为电解。在未来的氢经济中,氢气将从各种能源中生产出来并储存起来以备日常使用,或者可以将其转移到需要的地方,然后干净地转化为热能和电能。能源用于从水中生产氢气,一次和二次能源形式都可再生且与环境相容,从而形成理想的清洁和永久能源系统,这被称为太阳能氢能系统。氢可用于当今使用化石燃料的任何领域,除了特别需要碳的情况。氢可用作英特尔内燃机、涡轮机和喷气发动机的燃料,其效率甚至比化石燃料(例如煤、石油和天然气)更高。汽车、公共汽车、火车、座椅、潜艇、飞机都离不开氢。燃料电池还可将氢直接转化为电能,在交通运输和固定发电领域有多种应用。金属水合物技术在制冷、空调、氢气储存和净化领域有多种应用。氢与氧燃烧可产生氢气,在工业过程和专业领域有多种应用。此外,氢还是计算机、冶金、化学、制药、化肥和食品等众多行业的重要工业气体和原料。