在本文中,我们讨论了量子纠缠正统定义的相对主义视角性质(从优选因式分解的角度)。我们还在 Barnum 等人 [6,7] 提出的广义纠缠定义中从优选可观测量的角度考虑了这一方面。更具体地说,我们将讨论正统纠缠定义所隐含的不可分离相对主义、其广义化所隐含的语境相对主义以及目前专业文献中讨论的一些其他严重问题。在本文的第二部分,我们讨论了最近提出的客观不变纠缠定义,该定义被理解为有效和强度关系的实际和潜在编码 [32]。通过推导两个定理,我们将明确展示这种新的客观纠缠定义如何能够摆脱不可分离相对主义和语境相对主义。根据这些定理,在所提出的关系定义中,所有可能的可观测量子集以及所有可能的因式分解都可以全局视为指代同一(潜在)事态。结论是,与正统定义不同,这种新的客观关系纠缠概念从一开始就能够绕过相对主义,为现实理解量子相关性打开大门。
重离子碰撞物理学的主要目标之一是探索奇异物质态的性质,即热、致密且难相互作用的重子物质。它可以在实验室中通过相对论能量下的重核碰撞来重现。格点量子色动力学 (QCD) 计算表明,在高能和低重子密度下,夸克胶子等离子体 (QGP) 到强子气体的转变是平稳的 [1]。人们普遍认为,最终以三临界点结束的一级相变发生在 √ s = 3 至 10 GeV 之间的能量范围内,例如,参见 [2] 及其参考文献。各种过去和正在进行的实验,如相对论重离子对撞机 (RHIC) 上的束流能量扫描 (BES) 和 BES II [ 3 , 4 ]、欧洲核子研究中心的超级质子同步加速器 (SPS) 上的实验,都在探索与金和铅离子束的碰撞,以发现上述能量范围内的任何特殊性。然而,到目前为止,还没有观察到一级相变和三临界点。未来的实验,如基于核子加速器的离子对撞机设施 (NICA) 和反质子和离子研究设施 (FAIR) 旨在以更高的亮度在给定能量下进行碰撞,这让我们有希望在那里看到一些新的东西。观察相变的困难源于许多因素。其中一些是QGP相存在时间极短(大约10 − 24 fm/ c),系统中粒子数少,物质在坐标和动量空间中都具有高度各向异性等。探测器记录的所有有价值的信息大约是数千个具有相应能量和动量的粒子。因此,很难对它们来自的介质做出任何合理的假设。
摘要 本文介绍了(相对论)拉格朗日-汉密尔顿力学系统几何流的经典和量子信息理论。描述了 G. Perelman 熵泛函的正则非完整变形和经典力学系统的几何流演化方程的基本几何和物理性质。研究了此类 F 和 W 泛函在 Lorentz 时空流形和三维类空超曲面上的投影。这些泛函用于阐述拉格朗日-汉密尔顿几何演化的相对论热力学模型以及各自的广义汉密尔顿几何流和非完整 Ricci 流方程。非完整 W 熵的概念是作为经典香农熵和量子冯诺依曼熵的补充而开发的。考虑了基于经典和量子相对熵、条件熵、互信息和相关热力学模型的方法的几何流泛化。利用密度矩阵的形式和量子通道的测量来阐述量子力学系统演化的量子几何流信息理论的这些基本成分和主题。
背景。根据目前的脉冲星发射模型,光子是在磁层和电流片内产生的,沿着分界线,位于光柱的内部和外部。无线电发射在极冠附近占优势,而高能对应物在光柱周围的区域可能会增强,无论是磁层还是风。然而,引力对它们的光变曲线和光谱特性的影响研究得很少。目的。我们提出了一种模拟中子星引力场对其发射特性影响的方法,该方法是根据广义相对论描述的缓慢旋转中子星度量中旋转偶极子的解来模拟的。方法。我们以假设背景史瓦西度量为前提,用数值方法计算了光子轨迹,将我们的方法应用于中子星辐射机制,如热点的热辐射和曲率辐射的非热磁层辐射。我们详细描述了广义相对论对远距离观察者观测的影响。结果。天空图是使用广义相对论旋转偶极子的真空电磁场计算的,扩展了之前为 Deutsch 解决方案所做的工作。我们将牛顿结果与广义相对论结果进行了比较。对于磁层发射,我们表明光子轨迹的像差和曲率以及 Shapiro 时间延迟显著影响了无线电和高能光变曲线之间的相位延迟,尽管定义脉冲星发射的特征脉冲轮廓保持不变。
摘要:我们考虑了相对论潮汐对时钟比较实验频率偏移的影响。在潮汐、轴对称和旋转的地球引力场中,推导出频率偏移和时间传递的相对论公式。借助描述固体地球潮汐响应的洛夫数,我们建立了地面时钟比较实验的潮汐效应与重力仪的局部重力潮汐之间的数学联系,这反过来又为我们提供了一种利用局部重力潮汐数据消除潮汐对时钟比较影响的方法。此外,我们开发了一种受扰开普勒轨道的方法来确定太空任务时钟比较的相对论效应,与传统的未受扰开普勒轨道方法相比,该方法可以进行更精确的计算。利用这种摄动方法,可以给出由于潮汐力、地球扁率等影响而引起的轨道变化对相对论效应的摄动。另外,作为结果的应用,我们模拟了地面时钟比较中频移的潮汐效应,并对天琴任务和 GPS 给出了一些估计。
可能会觉得,如果脱离广义相对论或更广泛的场论考虑,就无法充分理解能量-质量“等价性”。这种态度的表达见 Lehmkuhl (2011, p.454, n.1)。但有充分的理由认为,可以在狭义相对论粒子动力学的有限背景下以富有启发性的方式研究能量-质量关系,事实上,这种受限背景是探究能量与质量关系的合适起点。首先,爱因斯坦 (1905) 所阐述的质量与能量的最初关联完全基于狭义相对论粒子动力学。因此,存在一个简单的概念问题,即如何理解这种等价性,它早于任何广义相对论或场论考虑。爱因斯坦认为,质量和能量的同一性已经建立在相对简单的点粒子动力学相对论理论之上。其次,下文讨论的对公认观点提出的哲学挑战在广义相对论的更广泛背景下再次浮现。正如 Hoefer (2000) 所指出的,能量和质量的概念地位在该背景下更成问题。因此,从更简单的情况开始是一种很好的哲学方法,希望对狭义相对论粒子动力学的清晰理解可以指明理解更复杂背景的方向。这里提出的解释是否可以适当地扩展到包括广义相对论在内的经典领域,这是一个悬而未决的问题。
自从the骨脉搏放大的发明是在2018年被诺贝尔物理学奖所认可的,因此可用的激光强度持续增加。Combined with advances in our understanding of the kinetics of relativistic plasma, studies of laser–plasma interactions are entering a new regime where the physics of relativistic plasmas is strongly affected by strong-field quantum electrodynamics (QED) processes, including hard photon emission and electron–positron ( e – e þ ) pair production.繁殖过程和相对论的集体粒子动力学的这种耦合可能会导致新的等离子体物理现象,例如从近吸真空中产生致密的E – e – e – e – e – e – e – e – e s plasma,完全通过QED过程吸收了完全的激光能量,或通过QED过程来吸收Q,或者通过超相对性电子束的停止,可以渗透过毛孔,这可能会渗透到毛孔上,这是一位毛孔的质量,这是一位毛孔的质量,这是一定的质量,这是一定的质量,这是一位毛孔的质量。 光。除了具有根本的兴趣外,至关重要的是,研究这种新的制度是了解下一代超高强度激光器 - 肌电实验及其所产生的应用,例如高能量离子,电子,电子,正电子和光子源,用于基本物理学,医学放射治疗和下一代放射射线照相术的基础物理学研究,以及用于居家园的下一代安全和居民安全和行业。
量子混沌是基础物理学的一个分支,研究量子力学、统计物理学和非线性动力学中的毛细管间场[1–8]。早在量子力学成立之前,1913年玻尔就提出了量化规则,并利用该规则成功地预言了氢原子的能谱,很好地解释了实验观测得到的巴尔末公式。1917年,爱因斯坦将玻尔的量化规则扩展至相空间中具有全局环面结构的可积系统[9]。随后他注意到这些量化规则仅适用于可积系统,对更一般的不可积系统则不适用[9,10]。约半个世纪后,在 20 世纪 70 年代,受到非线性动力学和混沌研究的启发,如何将半经典量化规则推广到不可积系统的问题再次引起学界的关注,并发展了 Gutzwiller 的迹公式,指出尽管测度为零,但不稳定周期轨道在塑造量子谱涨落行为方面起着至关重要的作用 [5, 11 – 23]。量子系统,如量子
1 上海纽约大学,上海浦东世纪大道 1555 号,邮编 200122,中国 2 尼日利亚联邦理工大学物理科学学院物理系,邮编 PMB 1526,邮编 Owerri 460001,尼日利亚 3 哈萨克斯坦纳扎尔巴耶夫大学物理系,邮编 53 Kabanbay Batyr Ave.,阿斯塔纳 0100006 4 麻省理工学院物理系,邮编 02139,美国 5 麦考瑞大学物理与天文系,邮编 2109,新南威尔士州,悉尼 6 国家信息与通信技术研究所,邮编 184-8795,日本 7 印度钦奈麦拉波罗摩克里希纳教会维韦卡南达学院物理系,邮编 600004 8 路易斯安那州立大学物理与天文系赫恩理论物理研究所,路易斯安那州巴吞鲁日70803,美国 9 中国科学技术大学中科院-阿里巴巴量子计算实验室,上海 201315,中国 10 上海纽约大学-华东师范大学物理研究所,上海市中山北路 3663 号,200062,中国 11 日本东京都小金井市贯井北町 4-2-1 信息通信技术研究所,184-8795,日本 12 华东师范大学物理与材料科学学院,精密光谱国家重点实验室,上海 200062,中国 13 日本东京都千代田区一桥 2-1-2 信息学研究所,101-8430,日本 14 纽约大学物理系,纽约州纽约市 10003,美国(日期:2019 年 11 月 6 日)
本书第二版由 John Wiley & Sons 于 1998 年出版。© 2003 Springer-Verlag New York, Inc. 保留所有权利。未经出版商(Springer-Verlag New York, Inc.,175 Fifth Avenue,New York,NY 10010,USA)书面许可,不得翻译或复制本作品的全部或部分内容,但与评论或学术分析相关的简短摘录除外。禁止将其用于任何形式的信息存储和检索、电子改编、计算机软件或现在已知或今后开发的类似或不同的方法。本出版物中使用的商品名称、商标、服务标记和类似术语,即使未指明,也不得视为对其是否受所有权保护的意见表达。