摘要 有人假设内部振荡可与外部环境节律同步(即同步化),从而促进感知和行为。迄今为止,关于神经振荡相位与行为之间联系的证据很少且相互矛盾;此外,大脑是否可以使用这种试验性机制进行主动时间预测仍是一个悬而未决的问题。在我们目前的研究中,我们对 181 名健康参与者进行了一系列听觉音高辨别任务,以阐明节奏提示和同步化所提出的行为益处。在我们三个版本的任务中,我们没有观察到所谓的同步化的感知益处:与异相出现的目标或随机出现的目标相比,与节奏提示同相出现的目标在辨别准确性或反应时间方面没有提供感知益处,我们也没有发现节奏提示和随机提示之前的目标的表现差异。然而,我们发现提示频率对反应时间有令人惊讶的影响,参与者对频率较高的提示节奏反应更快。因此,我们没有提供同步的证据,而是提供了隐性主动感知的暂定效应,即更快的外部节奏导致运动皮质和感觉皮质之间的通信速率更快,从而允许更早地采样感觉输入。
我们周围的世界是一个自动过程,每当我们使用眼睛、耳朵、鼻子和其他感觉器官时,这个过程就会“自由”地发生。但感觉和知觉是一个主动的过程,它依赖于大脑、脊髓和周围神经系统中极其敏感的受体和强大的计算机器。我们的感知能力经过数百万年的进化才形成现在的形式。本课程的核心重点是研究这些感官系统是如何工作的以及为什么会这样。我们将使用来自各种学科(哲学、物理学、计算机科学、神经科学、心理学)的见解和方法,对主要感官(视觉、听觉、触觉、嗅觉、味觉)进行详细研究。我们将从研究感知信息的物理基础(例如光、声波)开始,然后研究这些信息在大脑中转化为感知的生物和心理过程。
我们周围的世界是一个自动过程,每当我们使用眼睛、耳朵、鼻子和其他感觉器官时,这个过程就会“自由”地发生。但感觉和知觉是一个主动的过程,它依赖于大脑、脊髓和周围神经系统中极其敏感的受体和强大的计算机器。我们的感知能力经过数百万年的进化才形成现在的形式。本课程的核心重点是研究这些感官系统是如何工作的以及为什么会这样。我们将使用来自各种学科(哲学、物理学、计算机科学、神经科学、心理学)的见解和方法,对主要感官(视觉、听觉、触觉、嗅觉、味觉)进行详细研究。我们将从研究感知信息的物理基础(例如光、声波)开始,然后研究这些信息在大脑中转化为感知的生物和心理过程。
这是一篇探索性文章,始于保罗·维利里奥(Paul Virilio)关于“他们看到的机器”产生的内部表示的性质和特征的问题,通过产生自动化和多光谱的现实感知。在1980年代后期写作,他预料到了很久以后发生的事情:对现实的预测性和统计解释的构成在纪律机构和战争的行为中越来越多地渗透到现实中。但是,他夸大了这些机器的这些内部表示,因为它们不需要任何视频退出,往往会将人排除在将要采取的机械想象中。避免了这种末世论的观点,即约翰·约翰斯顿提出的麦克里亚人愿景的概念更为合适:它解释了机器自动化的看法与人类的自动化感之间的差异,但探索了两者相连的共同地形。
我们根据多视图图像和标准定义图来解决通过澳大利亚驾驶车辆的场景推理问题。在此任务上开发型号对无人驾驶车辆的安全操作是有益的。我们参加了自主盛大挑战的无地图驾驶轨道,该挑战刺激了识别交通元素和车道中心线并了解其拓扑关系的模型的发展。使用带有头到区域机制的车道注意模块和相同的参考点初始ization策略,以端到端的方式进行了最新的LANESEGNENT系统。我们通过评估其编码机制中的替代骨架来探讨该系统的有效性。我们的分析表明,使用大于原始Resnet-50基线表现的主链性能。
摘要 在近体空间 (PPS) 中,与远离身体的物体相比,靠近身体的物体的视觉形状辨别速度更快。当感知深度基于 2D 图像提示时,PPS 中的视觉处理也会增强。从相对低级(检测、大小、方向)到高级视觉特征(面部处理),都观察到了这种优势。虽然多感官联想也显示出近端优势,但 PPS 是否影响视觉感知学习仍不清楚。在这里,我们研究了感知学习效果是否会根据视觉刺激与观察者的距离(近或远)而变化,这是通过利用庞佐错觉幻觉诱导的。参与者执行了视觉搜索任务,他们报告了干扰项中是否存在特定目标物体方向(例如,指向下方的三角形)。在近距离(近组)或远距离(远组)练习视觉搜索任务(每天 30 分钟,持续 5 天)之前和之后评估表现。结果表明,在近距离空间进行训练的参与者没有进步。相比之下,在远空间进行训练的参与者在远空间和近空间的视觉搜索任务中都表现出了进步。我们认为,远空间训练后的这种进步是由于在远空间中更多地部署了注意力,这可以使学习更有效,并可以跨空间推广。
在神经科学领域,对织物与皮肤相互作用过程中的感觉知觉的精确评估仍然知之甚少。本研究旨在通过脑电图 (EEG) 光谱强度研究不同纺织品对织物刺激的皮质感觉反应,并评估 EEG 频带、传统主观问卷和材料物理性质之间的关系。招募了 12 名健康成年参与者来测试三种不同纺织品成分的织物,这三种织物分别为 1) 棉、2) 尼龙和 3) 涤纶和羊毛。通过织物触感测试仪 (FTT) 定量评估织物的物理性质。邀请受试者通过主观问卷和客观 EEG 记录对织物样品的感觉知觉进行评分。对于不同的织物刺激,EEG 的 Theta 和 Gamma 波段相对光谱功率存在显著差异(P < 0.05)。 Theta 和 Gamma 能量与问卷调查的大多数主观感觉以及 FTT 测量的织物物理特性具有显著相关性(P < 0.05)。EEG 频谱分析可用于区分不同纺织成分的织物刺激,并进一步指示织物刺激过程中的感觉知觉。这一发现可为进一步通过 EEG 频谱分析探索性研究感觉知觉提供依据,可应用于未来假肢中皮肤触觉的大脑发生器的研究以及工业中感觉知觉的自动检测。
- 关掉或调暗灯光。 - 使用再生纸代替白纸。 - 允许在课堂上佩戴遮阳板。 - 尽量不要使用白色黑板。 - 增加项目工作时间并缩短考试时间。 - 鼓励使用覆盖物。 - 在黑板上分栏书写。 - 为儿童复印好材料(例如工作表)。为打印文本选择合适的字体(例如 Arial)。 - 避免使用强烈的色彩、对比和图案(也包括衣服)。 - 允许使用(木制)尺子和/或放大镜和/或眼镜,并理解是否有人不想使用。 - 总是问:“你看到了什么?”而不是“你看到了吗?”并相信学生的答案。