3.2.如果勘探工作得到区域工作计划的批准,公司必须为任何工作计划提交书面工作计划。工作计划必须在工作开始前至少二十一 (21) 天提交给相关地区经理和皇家土地经理(针对皇家土地上的工作)。公司必须遵守相关地区经理提出的任何推迟、停止或修改拟议工程的要求。
在开采和运输煤炭的过程中,操作员在矿井狭窄的空间内可能会被移动机械撞击或抓住。解决此问题的方法是使用运输设备上的导航系统,以便它跟随开采煤炭的机器。这本质上涉及基于传感器的机器对接。能够在恶劣的矿井环境中生存的传感器起着关键作用,这些环境包括灰尘、甲烷气体和水。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,确保将煤炭正确装载到运输设备中。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。但是,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场,范围为 0.1 至 18.0 m。 对于单目标模式,在距离 3.56 m 时,标称范围精度为 4.3%。 生成校正算法将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,准确度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个主动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III 的制导系统。当前操作场景 跟随采矿机器的运输系统在商业上不存在。这样的系统可以减少当前运输采矿设备造成的死亡和伤害,并且是当前运输控制的可行替代方案。
在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
在开采和运输煤炭的过程中,操作员在矿井狭小的空间内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 米的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成校正算法将误差降低至 0.6%。空气尘埃测试表明,在超过联邦法律允许的浓度水平(7.5 倍)时,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度