气候政策不确定性(CPU)被定义为即将到来的关于气候变化的法律和政策的非命令性,可能会通过多种机制影响原油价格。首先,CPU会影响原油供应和DE MADE,从而影响了其在全球市场的价格(Guo等,2022)。第二,关于未来气候含义的不确定性会影响与能源相关的投资决策。如果公司担心由于潜在的气候法规而对未来对石油的需求,则可能会适当地改变其服装计划。因此,石油价格可能会波动。的确,更严格的气候法规可能会增加资本成本,从而减少对受影响公司的投资(Bogmans等人,2023年)。应用基于VAR的结构场景,Boer等。(2022)证明,供应端气候政策可能会提高油价。第三,市场参与者对未来气候政策的看法可能会达到统计的石油价格。如果投资者和交易者期望更严格的统计数据,那么在正式采用这些措施之前,石油价格甚至可能上涨。第四,气候政策经常寻求最大程度地减少对化石燃料(例如原油)的依赖,而倾向于绿色的能源。对将要采用的确切政策的怀疑可能会导致对未来石油消费的歧义。这种不确定性会影响Mar
在连续变量量子技术的背景下,高斯状态和操作通常被视为自由可用的,因为它们相对容易通过实验获得。相比之下,非高斯状态的生成以及非高斯操作的实施则带来了重大挑战。这种分歧促使人们引入非高斯性的资源理论。对于任何资源理论,确定资源之间的自由转换协议(即非高斯状态之间的高斯转换协议)具有实际意义。通过系统的数值研究,我们通过任意确定性的一对一模式高斯映射解决了实验相关的单模非高斯状态之间的近似转换。首先,我们表明,对于有限能量,猫状态和二项式状态大致等效,而这种等效性以前仅在无限能量极限下才为人所知。然后,我们考虑从光子增加和光子减少的压缩态生成猫态,通过引入额外的压缩操作来改进已知方案。我们开发的数值工具还允许人们设计出三压缩态到立方相态的转换,超越之前报道的性能。最后,我们确定了其他各种不可行的转换。
Covid-19爆发使所有人感到惊讶。大流行在镇定和死亡方面一直是毁灭性的,并使经济停顿了(见Phan&Narayan,2020年)。大流行导致了无与伦比的政策反应 - 锁定,社会疏远和刺激套餐 - 揭开了全球(Iyke,2020b)。围绕这些政策回应的确定性是巨大的,因为政策制定者和其他经济因素不是反应是暂时的还是永久的,干预措施在多大程度上影响投资和消费活动,经济将需要多长时间的经济康复等等(请参阅Altig等,2020)。图1的面板A显示,除日本和印度以外,亚洲国家的EPU索引在Covid-19-demic期间经历了极端的向上波动。为了透视事物,图1的B小组表明,全球经济政策从来没有像目前那样确定,甚至甚至2007 - 2009年的全球金融危机也能够引起这种不太艰难的水平。我们发现大流行在中国和韩国向上引起的EPU的强烈经验支持,但在其他国家中则不太如此。对于日本和印度,我们发现Covid-19对EPU没有影响,这反映了图1中这些国家的EPU的中等模式。我们表明,我们的估计值在Covid-19 Pan DemIC的规格和度量方面都是可靠的。
研究表明,外国投资者不断变化的风险偏好是全球金融周期的一个关键决定因素。这种风险情绪的波动也与无抛补利率平价 (UIP) 溢价、资本流动和汇率的动态相关。为了了解这些风险情绪的变化如何跨境传递,我们提出了一个两国宏观经济框架。我们的模型以美国金融中介机构跨境持有风险资产为特征,这些中介机构在金融摩擦下运作,并充当全球中介机构,承担外国资产风险。在这种设置下,美国特定不确定性的外生增加(以美国资产波动性增加为模型)导致两国风险溢价上升。发生这种情况的原因是,更高的不确定性导致美国中介机构面临去杠杆压力,从而引发全球风险溢价上升和全球资产价值下降。而且,当美国的不确定性上升时,外国对美元的汇率就会贬值,资本就会流出外国,外国的UIP溢价就会上升,而美国的UIP溢价就会下降,就像数据中显示的那样。关键词:金融摩擦、风险溢价、时变不确定性、中介资产定价、金融溢出效应、全球金融周期
摘要。使用统计建模可以从数据得出结论时有两种文化。一个人假设数据是由给定随机数据模型生成的。另一个使用算法模型,并将数据机理视为未知的。统计社区已致力于几乎独家使用数据模型。这一承诺导致了无关紧要的理论,可疑的结论,并阻止了统计学家从事各种有趣的当前问题。在理论和实践中,算法建模在统计数据外迅速发展。 它既可以在大型复杂的数据集上使用,也可以用作更准确,更有信息的替代方法,可在较小的数据集上进行数据建模。 如果我们作为领域的目标是使用数据来解决问题,那么我们需要摆脱对数据模型的独家依赖并采用更多样化的工具。算法建模在统计数据外迅速发展。它既可以在大型复杂的数据集上使用,也可以用作更准确,更有信息的替代方法,可在较小的数据集上进行数据建模。如果我们作为领域的目标是使用数据来解决问题,那么我们需要摆脱对数据模型的独家依赖并采用更多样化的工具。
由于对未来全球经济前景缺乏信心,最近的 COVID-19 危机增加了金融市场的不确定性(Athari 等人,2023 年)。COVID-19 大流行还改变了沟通过程和信息检索。由于流动限制,社交媒体应用程序在大流行期间显示出更高的增长。Twitter 是投资经理、全球领导者和普通公众分享对不同热门话题的看法和情感的最受欢迎的社交媒体平台。例如,根据政策不确定性网站(访问日期:2023 年 8 月 12 日),2019 年 12 月的平均英文推文总数为 1,412,758 条,由于大流行而显着增加,到 2020 年 4 月达到最高的 4,457,241 条。行为经济学文献强调了个人和群体情绪或观点的重要性。 Twitter 等社交平台可以分享有关金融和经济状况的信息,以提高人们的认识并提供预测金融市场的见解(Broadstock & Zhang,2019)。
摘要:这项研究深入研究了合并冷却,加热和功率(CCHP)系统中生物质气体和天然气的整合。设计了一种半分离的绿色能源CCHP(SIGE-CCHP)模型,以仔细检查各种优化目标的共同开枪设备的性能,同时操纵天然气和生物量气体的比例作为输入。的发现表明,升级生物质气体导致碳排放量的减少,但引发了运营和维护成本的升级。但是,以1:1的最佳混合率,碳排放率显示出边际增量,并大幅下降了操作和维护费用。值得注意的是,当优先考虑运营和维护成本时,该系统表现出最佳性能,从而降低了26.76%的成本。相反,当优先考虑碳排放量时,该系统变成了一个碳固相体,最大能力吸收2021.86kg二氧化碳。这项研究提供了理论基础,以优化共同开枪设备的运行,并通过旨在直观地阐明系统上混合比的影响的灵敏度分析增强。关键字:sige-cchp;生物质气;燃烧天然气;操作和维护成本;碳排放;灵敏度分析简介
为了在现实世界中部署强化学习(RL)代理,它们必须能够推广到看不见的环境。但是,RL在分布外的概括方面挣扎,通常是由于过度拟合培训环境的细节。尽管可以应用监督学习的正则化技术来避免过度插入,但超级学习和RL之间的差异限制了其应用。为了解决这个问题,我们提出了RL的信噪比调节的参数不确定性网络(SNR PUN)。我们将SNR作为正规化网络的参数定向的新量度,并提供了正式分析,解释了SNR正则为什么对RL效果很好。我们证明了我们提出的方法在几个模拟环境中概括的有效性;在一个物理系统中,显示了使用SNR PUN将RL应用于现实世界应用程序的可能性。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要。甲烷排放的现场水平测量值由操作员与自下而上的散布清单进行对帐,以提高所报告排放的准确性,彻底和确定。在这种情况下,至关重要的是避免测量错误并了解测量不确定性。遥远的飞机系统(通常称为“无人机”)可以在现场级甲烷排放的量化中起关键作用。典型的实现使用“质量平衡方法”来量化排放,高精度甲烷传感器以垂直窗帘模式安装在四极管无人机上。然后可以根据测量的甲烷浓度数据和同时的风数据在事后计算总质量排放率。受控释放测试表明,使用质量平衡方法的错误可能是相当大的。例如,Liu等。(2024)报告了测试的两个无人机解决方案的绝对错误超过100%;另一方面,如果在数据上放置了其他约束,则误差可能会小得多,在Corbett和Smith(2022)中的根平方错误的顺序,将分析限制在风场稳定的情况下。在本文中,我们提出了对物理现象的系统误差分析,该分析影响了与甲烷浓度数据获取和后处理有关的参数质量平衡方法中的误差。这些来源的示例包括单独分析了词的来源,并且必须意识到,实践中可以积累单个错误,并且也可以由未包含在本工作中的其他来源增加它们。