为了以最有效的方式恢复转基因柑橘植株,使用选择标记基因至关重要。在这项研究中,结果表明,将乙酰乳酸合酶 (ALS) 基因的突变形式与添加到选择培养基中的除草剂选择剂伊玛莠平 (IMZ) 结合使用可以实现这一目标。这种方法能够开发顺式基因再生体,即不掺入目前用于转基因选择的细菌基因的植株,此外,它还允许生成经过编辑的非转基因植株,这些植株的内源性 ALS 基因发生了改变,从而产生 IMZ 抗性。在这项研究中,将外植体与携带与 T-DNA 中的 nSpCas9 融合的胞苷脱氨酶的农杆菌共培养,并在添加了 IMZ 的培养基中选择再生体,从而恢复了柑橘突变体,其中 ALS 已使用碱基编辑器系统转化为 IMZ 抗性形式。对无转基因植物的分析表明,T-DNA 基因的瞬时表达足以诱发 ALS 突变,从而以 11.7% 的频率产生 IMZ 抗性芽。据我们所知,这是第一份关于无 T-DNA 编辑柑橘植物的报告。虽然需要进一步优化以提高编辑效率,但这种方法将允许生成具有改进的感官/农艺特征的新柑橘品种,而无需使用外来基因。
为什么我们需要颠换碱基编辑器? CRISPR-Cas9 系统彻底改变了基因组工程领域。该系统通过在基因组中生成小的插入/缺失,可高效地引起靶向敲除。从一个核苷酸到另一个核苷酸的精确修改需要充足的供体模板供应和同源定向修复 (HDR) 途径的诱导 [1]。胞嘧啶碱基编辑器 (CBE) 和腺嘌呤碱基编辑器 (ABE) 的发明使我们能够在没有供体模板的情况下在 DNA 或 RNA 中进行靶向 C 到 T 和 A 到 G 的转换 [2-5]。CBE 和 ABE 都已广泛应用于各种生物体,以创建或纠正点突变,用于不同的应用 [5、6]。然而,CBE 和 ABE 仅催化碱基转换(嘌呤到嘌呤或嘧啶到嘧啶),并且只能用于实现 12 种可能的碱基替换中的 4 种。尽管如此,许多生物、治疗和作物改良应用都需要
利益竞争:加州大学董事会已获得和正在申请 CRISPR 技术专利,JAD 和 GJK 是这些技术的发明者。JAD 是 Caribou Biosciences、Editas Medicine、Scribe Therapeutics 和 Mammoth Biosciences 的联合创始人。JAD 是 Caribou Biosciences、Intellia Therapeutics、eFFECTOR Therapeutics、Scribe Therapeutics、Mammoth Biosciences、Synthego 和 Inari 的科学顾问委员会成员。JAD 是强生公司的董事,其研究项目由 Biogen 和辉瑞公司赞助。PAB 是 Beam Therapeutics 的顾问,拥有股票期权。DRL 是 Editas Medicine、Pairwise Plants、Beam Therapeutics 和 Prime Medicine 的顾问和联合创始人,这些公司使用基因组编辑技术。作者已提交了进化 ABE 的专利申请。
量子状态估计[1],即概念确定量子系统的完整说明的过程,对于NUMER应用至关重要,范围从量子化处理处理到量子模拟。在D维量子系统中,可以通过带有单位迹线的阳性半明确复合物来描述状态。因此,量子状态估计需要了解至少D 2-1线性独立的遗产运算符的期望值。传统的提出这些期望值的方法是测量D 2-1广义的Gell-Mann矩阵[2,3]。但是,这种方法需要大量的实验资源和D大范围的时间。一种替代方法是测量d + 1个不偏的碱基[4-8]。虽然此组提供了更好的缩放,但它仍然是线性的,并且它不知道是否存在相互无偏的基础
线粒体内膜的物理和化学特性对常用于核基因组碱基编辑的CRISPR系统提出了挑战,因为其向导RNA不能轻易进入线粒体来编辑线粒体DNA(mtDNA)1。此外,之前鉴定的DNA脱氨酶主要针对单链DNA(ssDNA),这限制了它们在线粒体DNA碱基编辑器的开发中的应用。然而,可以修饰双链DNA(dsDNA)中胞嘧啶的DddA脱氨酶的发现,使得开发线粒体DNA碱基编辑器成为可能,例如DddA衍生的胞嘧啶碱基编辑器(DdCBE)和转录激活因子样效应物(TALE)连接的脱氨酶(TALED)2,3。这些工具依赖于 DddA,但受到其序列偏好以及通过与转录抑制因子 CTCF 4 相互作用对核基因组产生脱靶效应的风险的限制。此外,DdCBE 和 TALED 会编辑目标序列的两条链 2 , 3 ,从而导致不准确。这些限制阻碍了这些工具在研究和治疗由线粒体DNA突变引起的疾病中的应用。
定点 RNA 碱基编辑能够实现遗传信息的瞬时和可控改变,代表了一种操纵细胞过程的最新策略,为新型治疗方式铺平了道路。虽然已经对引入腺苷到肌苷变化的工具进行了深入研究,但对胞苷到尿苷编辑的精确和可编程工具的工程设计却有些落后。在这里,我们证明,从 RESCUE-S 工具中获取的 ADAR2 腺苷脱氨酶进化而来的胞苷脱氨酶结构域在将 RNA 靶向机制从基于 Cas13 更改为基于 SNAP 标签时提供了非常高效且高度可编程的编辑。向导 RNA 化学的优化进一步允许在难以编辑的 5'-CCN 序列环境中显着提高编辑产量,从而提高了该工具的底物范围。关于编辑效率,SNAP-CDAR-S 在所有测试目标上都明显胜过 RESCUE-S 工具,并且在扰乱 β-catenin 通路方面也非常出色。 NGS 分析表明,这两种工具都存在类似、适度的全局脱靶 A 到 I 和 C 到 U 编辑。
碱基编辑器是专门设计的脱氨酶,能够以精确有效的方式定向转换基因组或转录组中的特定碱基,并有望纠正致病突变。限制这种强大方法应用的一个主要问题是脱靶编辑问题。最近的几项研究表明碱基编辑器会诱导大量脱靶 RNA 活性,并证明脱靶突变可能会被改进的脱氨酶版本或优化的向导 RNA 抑制。在这里,我们描述了一类新的脱靶事件,这些事件对于现有的检测基因组变异的方法来说是不可见的,因此迄今为止一直被忽视。我们表明,非特异性、看似随机的脱靶事件会影响整个基因组或转录组中的大量位点,并占脱靶活动的大多数。我们开发并采用一种对随机脱靶活动敏感的不同互补方法,并使用它来量化由于当前优化的脱氨酶编辑器而导致的大量脱靶 RNA 突变。我们提供了一种计算工具来量化全局脱靶活动,可用于优化未来的碱基编辑器。工程碱基编辑器能够以单碱基分辨率定向操纵基因组或转录组。我们相信,实施这种计算方法将有助于设计更具体的碱基编辑器。
核糖核蛋白(RNP)复合物介导的碱基编辑预计将非常有益,因为与质粒或病毒载体介导的基因编辑相比,其具有脱靶效应,尤其是在治疗应用中。但是,在细菌系统中产生丰富的产量和高纯度的重组胞嘧啶基础编辑器(CBE)或腺嘌呤碱基编辑器(ABES)的生产具有挑战性。在这里,我们从人类细胞表达系统中获得了高度纯化的CBE/ABE蛋白,并且表明CBE/ABE RNP表现出不同的编辑模式(即,与质粒编码的CBE/ABE相比,CBE/ABE的转化率较小(即,多个碱基与单个碱基的转化率较小),主要是导致细胞中RNP的寿命有限的原因。此外,我们发现与质粒编码的ABE相比,ABE RNP的DNA和RNA的脱靶效应大大降低。我们最终将NG PAM – tarbetable -abe RNP应用于视网膜变性12(RD12)模型小鼠中的体内基因校正。
碱基编辑器是一类新的可编程基因组编辑工具,它将 ssDNA(单链 DNA)修饰酶与催化失活的 CRISPR 相关(Cas)核酸内切酶融合,以诱导高效的单碱基变化。目前已报道了数十种碱基编辑器,显然这些工具是高度模块化的;ssDNA 修饰酶和 Cas 蛋白的多种组合产生了各种碱基编辑器,每种编辑器都有其独特的属性和潜在用途。从这个角度来看,我们描述了当前可用的碱基编辑器,强调了它们的模块化特性并描述了每个组件可用的各种选项。此外,我们简要讨论了合成生物学和基因组工程中的应用,在这些应用中,碱基编辑器比其他技术具有独特的优势。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2020 年 2 月 9 日发布。;https://doi.org/10.1101/2020.02.07.939074 doi:bioRxiv 预印本