【产品简介】 本产品是从高度耐热菌 Thermus aquaticus 中克隆其 DNA 聚合酶基因,原核表达后经柱层析纯化获得的超纯、高效、耐热 DNA 聚合 酶, SDS-PAGE 显示为一条 94kD 的蛋白条带。该酶除具有 5 ' -3 ' DNA 聚合活性外,还具有少量的 5 ' -3 ' DNA 外切活性,但不 具有 3 ' -5 ' DNA 外切活性(校读活性),适用于常规 PCR 扩增。 M5 HiPer plus Taq DNA Polymerase 扩增得到的 PCR 产物含有 3'-A 碱基,可直接用于 TA 克隆 ( 聚合美 TOPO-TA 克隆载体货号: MF019 或 MF020) 。
图 6 在 5 周龄和 37 周龄给药的受试者中,与用 BE4 mRNA 和靶向 PCSK9 的 gRNA 配制的对照 LNP 相比,用变体 12 编辑器 mRNA 和 sgRNA025 配制的校正 LNP 进行了比较。3 (A) 代表性苦味酸红染色的肝切片显示治疗期间有轻度纤维化(样本采自用对照 LNP 治疗的 37 周龄受试者,并在治疗后 1 周收集)。(B) 总肝提取物中的碱基编辑效率。结果表明,与 5 周龄受试者相比,37 周龄受试者的碱基编辑相当,并且由于校正肝细胞的增殖优势,碱基编辑效率随着时间的推移略有提高。(C) 通过免疫测定法 (Meso Scale Discovery) 测量血清人 AAT。(B) 与年龄匹配的对照组相比,血清样本的人中性粒细胞弹性蛋白酶抑制能力。
将载脂蛋白 B mRNA 编辑酶、催化性多肽样胞苷脱氨酶与催化功能受损的 Cas 蛋白(例如 nCas9 或 dCas9)融合,提供了一种新型基因编辑技术,即碱基编辑,可高效地实现靶向碱基替换。然而,在碱基编辑中观察到全基因组和全转录组脱靶突变,这引发了对治疗应用的安全性担忧。之前,我们开发了一种新的碱基编辑系统,即 transformer 碱基编辑器 (tBE),可在哺乳动物细胞和小鼠中诱导高效编辑,且不会观察到全基因组或全转录组脱靶突变。这里我们描述了设计和应用 tBE 的详细方案。本方案包括设计单向导 RNA (sgRNA) 和辅助 sgRNA 对、构建构建体、确定全基因组和转录组范围的脱靶突变、生产含有 tBE 的腺相关病毒、将腺相关病毒递送到小鼠体内以及检查体内编辑效果的步骤。使用 sgRNA-辅助 sgRNA 对,tBE 的高精度碱基编辑可以在 2-3 周内(在哺乳动物细胞中)或 6-8 周内(在小鼠中)完成。整个过程可以由研究人员使用分子生物学、生物信息学和小鼠饲养的标准技术共同完成。
真核生物中的碱基编辑事件需要兼容的染色质环境,但关于染色质因子如何影响编辑效率或窗口的研究很少。通过设计与各种先驱因子融合的BE(碱基编辑器),作者发现SOX2显著提高了GBE和CBE的编辑效率。SoxN-GBE(SOX2-NH3-GBE)提高了原型间隔物整体胞嘧啶的编辑效率,而SoxM-GBE/CBE(SOX2-Middle-GBE/CBE)则能够在PAM-近端胞嘧啶处实现更高的碱基编辑。通过分离SOX2的功能域,构建了SadN-GBE(SOX2激活域-NH3-GBE)以获得更高的编辑效率,而SadM-CBE则具有更宽的编辑窗口。通过 DNase I 试验,还证明了编辑效率的提高很可能与 SAD 诱导染色质可及性有关。最后,使用 SadM-CBE 在原癌基因 MYC 中引入终止密码子,该位点以前很少被高效编辑。在这项工作中,通过融合先锋因子或其功能域构建了一类新的先锋 BE,它在真核生物中表现出更高的编辑效率或更宽的编辑窗口。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。此版本的版权持有者于 2020 年 11 月 2 日发布。;https://doi.org/10.1101/2020.11.02.364430 doi:bioRxiv 预印本
细胞生物学国家重点实验室、上海分子男科学重点实验室、中国科学院上海生物化学与细胞生物学研究所、分子细胞科学卓越创新中心
众议院报告 116-445 第 29 页,附带 HR 7609《2021 年军事建设、退伍军人事务和相关机构拨款法案》,要求国防部环境部副助理部长向国会国防委员会提交季度报告,介绍国防部 (DoD) 在基地重新调整和关闭 (BRAC) 地点识别和修复全氟辛烷磺酸 (PFOS) 和全氟辛酸 (PFOA) 方面取得的进展,以及提高透明度的建议。此外,众议院报告 117-81 第 22 页,附带 HR 4355《2022 年军事建设、退伍军人事务和相关机构拨款法案》和 HR 2471《2022 年综合拨款法案》的联合解释性声明,要求国防部环境和能源恢复副助理部长为国会国防委员会准备一份综合报告,建立有关 BRAC 地点 PFOS/PFOA 的信息基线。本报告涵盖 2021 财年要求的所有剩余季度报告和 2022 财年报告语言中要求的有关已关闭军事设施中 PFOS/PFOA 的信息基线。具体而言,本报告包括 (1) 清理过程的背景;(2) 提高国防部清理过程透明度的建议;(3) 所有 BRAC 地点的列表;(4) 指示是否在饮用水和地下水中检测到 PFOS/PFOA; (5) 检测到的 PFOS/PFOA 水平;(6) 有关 PFOS/PFOA 可能来源的信息;(7) 对当前缓解措施和拟议补救计划的说明;(8) 补救状态;(9) 清理时间表;以及 (10) 对调查和清理 BRAC 地点全氟和多氟烷基物质 (PFAS) 的当前和未来成本的估计。
拟南芥中的可遗传碱基编辑可在 CESA3 处产生获得功能突变。A,纤维素合酶 3 (CESA3) 中的 esgRNA 靶标。C 到 T 的转变诱导
唯一识别单个细胞的分子条形码技术受到条形码测量限制的阻碍。通过测序读取不会保留组织中细胞的空间组织,而成像方法保留了空间结构,但对条形码序列不太敏感。在这里,我们介绍了一种基于图像读取短(20bp)DNA条形码的系统。在这个称为Zombie的系统中,噬菌体RNA聚合酶在固定细胞中转录工程条形码。随后通过荧光原位杂交检测所得RNA。使用竞争匹配和错配探针,Zombie可以准确区分条形码中的单核苷酸差异。该方法允许原位读取密集的组合条形码库和由CRISPR碱基编辑器产生的单碱基突变,而无需在活细胞中表达条形码。Zombie可在多种环境中发挥作用,包括细胞培养、鸡胚和成年小鼠脑组织。通过成像灵敏地读取紧凑和多样化的DNA条形码的能力将促进广泛的条形码和基因组记录策略。