Ritesh Haldar,Hongye Chen,Antoine Mazel,Dong-Hui Chen,Gaurav Gupta等人。天线:实现晶体化的伪装性果皮中实现良好的光波长转化的关键。高级材料界面,2021,8(10),pp.2100262。10.1002/admi.202100262。hal-03384232
摘要:脱氧核糖核酸(DNA)测序技术为披露遗传信息的披露提供了重要数据,并在基因诊断和基因治疗中起着重要作用。传统的测序设备很昂贵,需要大型且庞大的光学结构和其他荧光标签步骤。基于半导体芯片的测序设备具有快速测序速度,低成本和小尺寸的优点。DNA碱基配对的检测是基因测序中最重要的步骤。在这项研究中,成功设计了具有超过1300万个敏感单元的大型离子敏感的晶体管晶体管(ISFET)阵列芯片,用于检测DNA碱基配对。DNA碱基配对由传感器系统成功检测到,其中包括ISFET微阵列芯片,微流体系统和测试平台。芯片达到至少0.5 mV的高分辨率,从而识别了0.01 pH值的变化。这种互补的金属氧化物半导体(CMOS)兼容和成本效益的传感器阵列芯片,以及其他特殊设计的组件,可以形成一个完整的DNA测序系统,并具有潜在的分子生物学领域的应用。
1 马萨诸塞大学医学院 RNA 治疗研究所,美国马萨诸塞州伍斯特 01605。2 TriLink BioTechnologies,美国加利福尼亚州圣地亚哥。3 囊性纤维化基金会,CFFT 实验室,美国马萨诸塞州列克星敦 02421。4 马萨诸塞大学医学院生物信息学和整合生物学项目,美国马萨诸塞州伍斯特。5 同济大学生命科学与技术学院,上海 200092。6 麻省理工学院 David H. Koch 综合癌症研究所,美国马萨诸塞州剑桥。7 麻省理工学院化学工程系,美国马萨诸塞州剑桥。8 哈佛大学和麻省理工学院 Broad 研究所 Merkin 医疗变革技术研究所,美国马萨诸塞州剑桥。9 哈佛大学霍华德休斯医学研究所,美国马萨诸塞州剑桥 02138。 10 哈佛大学化学与化学生物学系,美国马萨诸塞州剑桥 02138。11 麻省理工学院医学工程与科学研究所,美国马萨诸塞州剑桥。12 哈佛-麻省理工学院健康科学与技术分部,美国马萨诸塞州剑桥。13 马萨诸塞大学医学院分子、细胞和癌症生物学系,美国马萨诸塞州伍斯特。14 马萨诸塞大学医学院分子医学系,美国马萨诸塞州伍斯特。15 马萨诸塞大学医学院李伟波罕见疾病研究所,美国马萨诸塞州伍斯特市 Plantation Street 368 号,邮编 01605。✉ 电子邮件:Wen.Xue@umassmed.edu
精确定位碱基编辑平台的开发目的是通过使用 RNA 适体 (Collantes, 2021) 来有效招募碱基修饰酶。精确定位碱基编辑系统可有效诱导靶标特异性核苷酸变化,而不会形成 DNA 双链断裂或插入缺失。该系统由三个部分组成:[1] 核酸酶缺陷型“切口酶” nCas9,仅切割或“切口”单链 DNA,与尿嘧啶糖基化酶 (UGI) 抑制剂融合 (Komor, 2016),[2] 胞苷脱氨酶碱基编辑器 (大鼠 APOBEC) 与适体结合蛋白融合,以及 [3] 适体单向导 RNA (sgRNA),可将 nCas9 和适体-脱氨酶融合物招募到特定的 DNA 靶位点(图 1)。将这三种成分递送到哺乳动物细胞中可诱导高度特定水平的 CG 到 TA 碱基转化,适用于涉及单个氨基酸点突变或功能性基因敲除的细胞和基因治疗应用。
构建进化的细菌底盘通常依赖于功能蛋白的定向进化。1 进化的蛋白质替代宿主中的天然对应物,从而形成具有特定表型的进化细菌底盘,2 例如大肠杆菌中进化的RpsE和酵母中的PfDHFR分别赋予壮观霉素抗性 3 和乙胺嘧啶抗性 4。然而,外源DNA的替代会影响宿主的安全性,这限制了宿主在某些领域的应用,特别是在食品工业中。因此,期望宿主自身的蛋白质得到进化。蛋白质定向进化的技术框架已经从体外发展到体内。5 – 7 定向进化的典型策略是随机诱变、半理性设计和理性设计。它们都严重依赖于从基因克隆、体外诱变、异源或整合的几个迭代步骤的过程
摘要:尽管档案数字存储行业已接近其物理极限,但需求却在大幅增长,因此出现了替代产品。最近的努力已经证明了 DNA 作为数字存储介质的巨大潜力,具有卓越的信息耐久性、容量和能耗。然而,大多数提出的系统都需要按需从头 DNA 合成技术,这些技术会产生大量有毒废物,因此不具备工业可扩展性和环保性。受半导体存储设备架构和基因编辑最新发展的启发,我们创建了一种称为“DNA 突变覆盖存储”(DMOS)的分子数字数据存储系统,该系统通过利用组合、可寻址、正交和独立的体外 CRISPR 碱基编辑反应来存储信息,将数据写入绿色合成 DNA 磁带的空白池中。作为概念验证,我们在 DNA 磁带上写下了我们学校徽标的位图表示和本研究的标题,并准确地恢复了存储的数据。
摘要:成簇的规律间隔短回文重复序列(CRISPR)/相关蛋白9系统(Cas9)已被广泛用于优化种质资源的多个方面。然而,大规模基因组研究表明,农作物的新变异归因于单核苷酸多态性(SNP)。因此,将单个碱基替换到植物基因组中可能会产生理想的性状。通过CRISPR / Cas9技术进行的基因编辑经常导致插入-缺失(indel)。碱基编辑可以在没有双链断裂(DSB)和供体修复模板(DRT)的情况下在基因组中实现精确的单核苷酸改变。因此,BE提供了一种关于基因组编辑的新思路,碱基编辑技术目前正在用于编辑许多不同生物的基因组。随着传统育种技术和现代分子育种技术的相互补充,各种基因组编辑技术应运而生。如何发挥 BE 应用的更大潜力是我们需要考虑的问题。本文,我们介绍了 CBE、ABE 和 CGBE 等各种碱基编辑。此外,还总结了碱基编辑技术在农业中的最新应用,包括作物产量、品质、疾病和除草剂抗性。最后,介绍了碱基编辑技术的挑战和未来前景。旨在全面概述 BE 在作物育种中的应用,以进一步改进 BE 并最大限度地发挥其价值。
全球有数百万人患有由 DNA 序列各种突变引起的罕见遗传病。罕见遗传病的传统治疗方法往往无效,因此人们对基因编辑方法寄予厚望。基于 nCas9(具有切口酶活性的 Cas9)或 dCas9(催化无活性的 DNA 靶向 Cas9 酶)的 DNA 碱基编辑系统能够在不造成双链断裂的情况下进行编辑。这些工具在不断改进,增加了它们在治疗中的潜在用途。在这篇综述中,我们描述了主要类型的碱基编辑系统及其在体外和体内实验中治疗单基因疾病的应用。此外,为了了解这些系统的治疗潜力,我们还研究了碱基编辑系统的优缺点。
1 博伊斯汤普森研究所,纽约州伊萨卡 14853,美国;2 马里兰大学植物科学与景观建筑系,马里兰州帕克分校,美国;3 扬州大学农学院,江苏省作物基因组学与分子育种重点实验室/植物功能基因组学教育部重点实验室,扬州 225009,中国;4 扬州大学江苏省粮食作物现代生产技术协同创新中心,扬州 225009,中国;5 康奈尔大学植物育种与遗传系,纽约州伊萨卡 14853;6 马里兰大学生物科学与生物技术研究所,马里兰州罗克维尔 20850。Ɨ 上述作者对本文贡献相同。
CHD3 33 中的新生变异和遗传变异。CHD3 蛋白中几处基因突变位置的示意图(图 1a)。使用上海交通大学医学院新华医院获得的一名 SNIBCPS 儿童及其未受影响的父母的基因组 DNA 进行全外显子组测序,我们在 CHD3 基因中发现了一个新生 SNV(c.C3073T,NM_001005271.3;p.R1025W,NP_001005271.2),并使用 Sanger 测序进行了验证(图 1b)。新生变异引起的氨基酸变化(R1025W)位于 CHD3 蛋白的解旋酶 ATP 结合结构域和解旋酶 C 末端结构域之间(图 1a)。 gnomAD 数据库 (http://gnomad.broadinstitute.org) 中的数据表明,该变异 (CHD3,17号染色体:7803967) 在东亚人群中不存在,这表明它是一种罕见变异。