摘要:根据农业使用的类型和施用的作物旋转,土壤有机碳的积累可能取决于,这可能导致全球碳循环中的CO 2固定较少。对不同农作物生产系统(谷物,草)中有机碳排放的知之甚少。缺乏关于土壤中碳含量对植物生产力的影响的更详细的研究,以及土壤的物理特性与矿物质肥料中温室气体(GHG)的吸收,生存能力和排放之间的联系。这项研究的目的是估计不同农作物旋转中土壤有机碳隔离潜力的长期影响。有机碳固换的最大潜力是诺福克型农作物旋转,其中降低土壤生育能力的农作物被每年增加土壤肥力的农作物所取代。与连续的黑色休耕相比,土壤碳固醇的潜力明显更高(46.72%),从27.70到14.19%,与田间作物和谷物作物旋转相比,与中间作物饱和的谷物作物和谷物作物旋转分别相比。在碳固存的角度,将多年生草保持一年是最有效的,而土壤仍然充满了以前农作物中未沉积的谷物稻草。与农作物旋转相比,没有肥料受精的黑色休耕,将土壤中有机碳的数量降低了两次,碳管理指数降低了2-5次,并为农业中碳固执的潜力带来了最大的风险。
摘要。土著树种在热带生态系统的碳固执中起着重要但低估的作用,从而减轻了全球气候变化。tamanu(calophyllum inophyllum)是一种土著树种,以其在印度尼西亚州Yogyakarta的Gunung Kidul的碳固存能力研究,这是一个环保的位置。我们的全面研究包括地上和地下生物量,土壤碳浓度和林下碳含量。该研究发现,塔玛努(Tamanu)架可以将碳储存在其生物量,地下和土壤中,即分别为54.2、0.5和64吨/公顷。还表明,土壤存储最多的碳,因为在该研究区域种植的塔玛努仍然相对较小,并且空间相对较大。这项研究还揭示了林下植物经常被忽视的作用,从而提高了这些生态系统的碳固化能力。强调了在地上上方和下方考虑碳存储的全面保护计划的需求。上述发现有助于制定有效的当地气候缓解政策和全球努力打击气候变化。
转移Savanna Fire Management(SFM)排放避免(EA)项目1。2月21日,在达尔文2024年北澳大利亚州萨凡纳消防论坛大厅的最新发展和前景,我认为,矿工和牧民都不是对许多土著人拥有的SFM项目的繁荣的最大威胁,这些SFM项目跨越了澳大利亚大部分北部的北部和统治我们的行业。到达Q'LD's Cape York Land Council(Dion Creek),WA的Kimberley Land Council(Tyronne Garstone)和NT北部土地委员会(Joe Martin-Jard)的首席执行官小组,我观察到最大的威胁是,堪培拉的环境变化,环境和水(dcceew)的有缺陷和不认真的方法(DCCEEW)是堪培拉的境界, SFM隔离和EA方法。具体来说,该部门对新的SFM隔离和EA方法的最初(2023年10月)提案似乎是基于对《碳养殖计划(CFI)法案所要求的“加法性”和“新颖性”规则的误读。SFM行业认为对该法案的简单误读导致该部门提出了一种科学无效的方法来估算/建模所有转移SFM EA项目的“合适的起始碳库存”。我的感觉是,我们的SFM行业工作组在协助该部门以误导的初始提案来解决明显的问题方面做得非常出色。在达尔文峰会上的官员似乎已经“听到”了我们工作组批评的关键方面,我认为他们的下一个建议将得到大量改善。如果是这样,未来是光明的。如果没有,对于许多SFM行业参与者来说,新的SFM方法将“到达时死亡” - 在经济上是不可行的。通过该部门的决定(好坏),围绕估算本月预期的SFM EA项目的“合适的起始碳库存”,我们很快就会找出堪培拉最近的修订后,现在已修订的现在为期六个月的时间表(下面第7页,下面)到2024年8月的部长级设立新的SECETERTRATION和EA MADED值得等待。同时,下面的我的图表有助于说明本说明其余部分讨论的关键问题。
我们通过对土壤进行彻底的原位和实验室测试,采取了全面的方法。这种双重方法旨在为我们提供对土壤组成的更细微的理解,使我们能够制定精确的策略,以进一步治疗和增强土壤生育能力。原位测试涉及现场评估,使我们能够观察其自然环境中的土壤特征。同时,实验室测试为详细分析提供了受控的设置,从而促进了对土壤特性和养分水平的更深入研究。这种综合努力确保了整体评估,从而引导我们采取明智的决定,以通过有针对性的治疗和改进来优化土壤生育能力。
摘要:森林在现代时代面临各种威胁。农林业系统,无论是传统还是引入的,都具有提供可持续资源并打击全球气候变化影响的巨大能力。土著农林业和森林土地使用系统是生物多样性保护和生态系统服务的重要储层,为农村社区的生计安全提供了潜在的贡献。这项研究旨在通过铺设样品图,该样品图的大小为20×20 m 2。在森林土地使用系统中,最大重要性值指数(IVI)包括Dalbergia Sissoo(71.10)(71.10),Pyrus Pashia(76.78)(76.78)和Pinus Roxburghii(79.69)(79.69)的上,中间和下层分别为AgroforeStration,而在agroforeStry的高度上,agroforeStry for AgroforeStry Sermist for AgroforeStry Sermist for AgroforeSord for AgroforeStry Symand for AgroforeSrib for f.在上部,而对于格鲁维亚·奥特瓦(Grewia optiva)来说,中间为53.82,下高度为59.33。The below-ground biomass density (AGBD) was recorded as 1023.48 t ha − 1 (lower), 242.92 t ha − 1 (middle), and 1099.35 t ha − 1 (upper), while in the agroforestry land-use system, the AGBD was 353.48 t ha − 1 (lower), 404.32 t ha − 1 (middle), and 373.23 t ha -1(上)。在森林土地使用系统中,记录的总碳密度(TCD)值分别为630.57、167.32和784.00 t ha-1,在农业中,中间和上高度分别为农业土地使用系统中的227.46、343.23和252.47。土壤有机碳(SOC)库存记录的45.32、58.92和51.13 mg c h - 1玛格莱夫农林业和森林的指数值分别为2.39至2.85和1.12至1.30。
稻田有可能进行碳固换,但另一方面,也是作为碳转移到大气的来源,具体取决于土地管理实践。被水稻田的状况导致农业活动贡献大量的排放气体,例如甲烷(CH 4)。采用稻田管理很重要,以增加碳固换,以缓解全球变暖的努力。这项研究是通过描述性探索方法进行的调查研究,该方法是通过直接现场观察和实验室分析进行的。观察到的变量是土壤有机物,微生物C生物量,块状密度,pH,粘土含量,c大米生物量和水稻生物量重量。通过有目的的采样方法采样方法。数据是通过以一种方差分析和皮尔逊的相关性来计算总碳固存和统计测试来处理数据的。结果表明,不同的水稻田间管理会影响稻田上的总碳封存。在45.89吨/公顷的有机稻田中发现了最高的隔离,然后以38.03吨/公顷的半稻田为半有机稻田,而常规的稻田则是34.36吨/公顷的最低水田。确定碳螯合量的因素是土壤有机碳和微生物生物量碳。建议的土地管理建议是增加有机肥料,在半甲基和常规的水稻田间管理系统中,维持土壤耕作和在有机系统中的肥料的应用并扩大有机稻田。
摘要本研究旨在评估Spe cial目的地区Bromo山区自然旅游区的碳和环境服务潜力。这项研究的重点是了解该区域的特定树成分和大小如何有助于碳吸收和环境益处,这也可以转化为碳信用量,这是一种国家收入的一种形式。涉及目的抽样的方法,以创建基于树直径的不同大小的观察样品图(OSP)。这些地块旨在测量给定区域中树木的生物量,碳潜力和环境服务潜力。收集的数据包括树种的组成,每种类型的树的数量,它们的直径和高度。这项研究应用了SPECIFIC公式来确定该地区生物量,碳和环境服务的潜力。关键发现表明,在十种已确定的植物物种中,桃花心木树(每公顷83棵)的统治地位,表明该区域中的特定但较低的生物多样性。这项研究的重要结果包括对生物质量潜力的定量,发现在地上的787.84吨/公顷,地下228.47吨/公顷,总计1016.31吨/公顷。该研究还评估了环境服务潜力,包括CO 2吸收和O 2产生。该面积的CO 2吸收能力估计为1753.04吨/公顷,相应的高O 2产生为1279.72吨/公顷。此外,该地区的碳信用额的可能性约为70.12 us $/公顷。这项研究对于理解特定森林地区(例如特殊的PUR姿势森林地区Bromo山)如何在全球环境可持续性努力中发挥重要作用至关重要。
在美国森林和森林中的碳螯合 - 每年约有11%的美国经济范围内温室气体(GHG)的排放量(Domke等,2020),并且最近的研究突出了人们强调的范围,以增强森林在气候Mitiga-tion中的作用,以增强森林在气候中的作用(DREVER等人(Drover et everer等)(Drever et al。,20221;该国东半部的森林在该国的森林碳表片中占有一定的份额。Domke等。 (2020)估计,美国东部31的林地占估价总碳量的约59%,但在2018年提供了48个持续状态的85%的净碳固存(Domke等人,2020年)。 土地使用历史和干扰制度显然在东部森林城市的大小中发挥了作用,而目前的前陆地很大一部分是过去200年中废弃的农业土地的产物,或者在19世纪末和20世纪初期的清晰度较高的情况下恢复率很高。 这导致假设该地区的森林是平均年龄的,并且随着这些森林成熟的生产率和碳固存的速度(例如,Bradford&Kastendick,2010; Hurtt et al。,2002; Turner&Koerper,1995)。 记录是迄今为止东部森林中的主要干扰(Brown等,2018; Canham等,2013),一些研究提出,总收获制度的增加可能会增加森林和森林产品中的净碳固醇(例如Peckham等,Peckham等,2012)。 Keeton等。Domke等。(2020)估计,美国东部31的林地占估价总碳量的约59%,但在2018年提供了48个持续状态的85%的净碳固存(Domke等人,2020年)。土地使用历史和干扰制度显然在东部森林城市的大小中发挥了作用,而目前的前陆地很大一部分是过去200年中废弃的农业土地的产物,或者在19世纪末和20世纪初期的清晰度较高的情况下恢复率很高。这导致假设该地区的森林是平均年龄的,并且随着这些森林成熟的生产率和碳固存的速度(例如,Bradford&Kastendick,2010; Hurtt et al。,2002; Turner&Koerper,1995)。记录是迄今为止东部森林中的主要干扰(Brown等,2018; Canham等,2013),一些研究提出,总收获制度的增加可能会增加森林和森林产品中的净碳固醇(例如Peckham等,Peckham等,2012)。Keeton等。Keeton等。这两个断言都受到挑战,并且是正在进行的辩论的主题(Keeton,2018; Keeton等,2011; McGarvey等,2015; Nunery&Keeton,2010; Rhemtulla等,2009)。(2011)认为,美国东北部的森林有很大的潜力将碳隔离和将碳存储到后期(350 - 400年)。将森林生态系统过程与木材产物生命周期相结合的研究表明,降低收获强度会增加碳的隔离(Gunn&Buchholz,2018; Nunery&Keeton,2010)。也对发展森林生物量能量的发展是美国东北部可再生能源组合的一部分(Milbrandt,2008; Perlack等,2008)。经常被吹捧为固有的“碳中性”能源,但很明显,需要考虑多种因素来评估生物量能量生产的净碳和气候影响(Schulze等,2012; Zanchi等,2012)。为了减少温室气体排放,许多生物能源政策认为,生物能燃烧产生的排放
