摘要 本研究旨在调查过期的异丙嗪-茶酸盐在硫酸环境中作为低碳钢腐蚀抑制剂的有效性。使用红外光谱和气相色谱法对该药物的功能基团和化学成分进行了表征。还采用了实验技术和重量分析法。评估了该药物的抑制效果(热力学和吸附参数)。使用 RSM 和 ANN 模型优化和建模了抑制效率。发现主要的功能基团是 OH、CO-NH-CO 伸展;=C- H 伸展;NH 变形,并含有 2,4-二叔丁基苯酚、1-十七烯、十三烷、11-十八烯酸丙酯等。不同抑制剂浓度下的吸附热 (Q ads ) 结果均为负值,异丙嗪-茶酸盐浓度为 0.8 g/L 时其值为 -67151.6 J/mol。 Frumkin 等温线是等温拟合中拟合效果最好的,因为它的平均 R 2 最高。313 K 和 323 K 下的 Gibb 吸附自由能值分别为 -10.23 kJ/mol 和 -10.29 kJ/mol,表明异丙嗪-茶碱分子的吸附是物理吸附而非化学吸附。重量法可获得 92.89% 的最大效率。ANN 对抑制效率的预测更好,R 2 值更高 (0.9999),RMSE 值更低 (0.0180) 和 SEP 值更低 (0.0230)。RSM 优化得到的最佳效率为 92.39%。阻抗法显示电容环路,表示电荷转移过程,极化测量表明该药物为混合型抑制剂。因此,异丙嗪-茶酸盐被证明是一种控制 H 2 SO 4 介质中低碳钢腐蚀的极佳抑制剂。关键词:腐蚀控制、低碳钢、硫酸、过期药物、抑制剂
rs-class.org › 行业 › getIndustry 铝合金/铝合金;钢/碳钢青铜/黄铜。蘑菇通风机。/ 蘑菇粉丝。管道风扇。/管道风扇。
通讯作者:Tolumoye J. Tuaweri摘要这项研究是关于使用绿色抑制剂和减肥方法对海水和土壤环境中低碳钢C-1026行为的腐蚀。绿色植物提取物是香气叶(SL)(ocimum gratissimum),木薯叶(Cl)(manihot esculenta)和neem叶(nl)(azadirachta indica)。添加了一定数量的菠萝汁,以增强对MS表面的抑制作用。研究的参数包括体重减轻,腐蚀速率,抑制效率,pH分析,Brinell硬度测试,表面粗糙度,扫描电子显微镜,电力动力学极化测量和傅立叶变换红外光谱。研究表明,绿色植物提取物在低碳钢C-1026上表现出良好的抑制效率。neem叶被认为具有最大抑制效率。添加绿色植物抑制剂,腐蚀速率降低。 此外,它们影响了低碳钢表面的硬度和表面粗糙度。 结果表明,绿色植物中的化学复合物在石油和天然气管道上具有一些抑制性。 关键词:化学复合物,腐蚀,腐蚀抑制剂,碳钢,绿色植物叶。腐蚀速率降低。此外,它们影响了低碳钢表面的硬度和表面粗糙度。结果表明,绿色植物中的化学复合物在石油和天然气管道上具有一些抑制性。关键词:化学复合物,腐蚀,腐蚀抑制剂,碳钢,绿色植物叶。
抽象的磷酸锌碱基腐蚀抑制剂,旨在确定抑制剂为碳钢提供保护的有效性,以防止腐蚀速率,在0、20、40和60 ppmm的抑制剂浓度方面的变化,这项研究使用了重量损失方法,并研究了通过培养基水和磷酸盐磷酸盐抑制剂的性能,并研究了水,水和pd的水平,并在水中进行水,并在水中进行水,seal sealisting sealisting水,pdam sealisting seal,pdam sealistor seal,pdam的水,pdam sealistor sc.电子显微镜)测试。该研究中使用的钢试样类型是碳钢,深腐蚀介质是冷却水,海水和PDAM水。添加磷酸锌碱基碳钢抑制剂有效地降低了PDAM水和海水中碳钢的腐蚀速率。在没有抑制剂的海水培养基中,从119.0457 MPY到1.7754 MPY和没有抑制剂的PDAM水培养基中,腐蚀速率的急剧降低,从18.5873 MPY到3.4163 MPY添加了抑制剂,腐蚀速率急剧降低。磷酸锌基抑制剂在冷却水腐蚀培养基中的效率为30.262%,浓度为40 ppm,浸泡时间为20天。关键字:抑制效率,腐蚀抑制剂,海水腐蚀,
PCC Rollmet开发了一种独特的冷挤压工艺,可以在各种材料上生产精确的薄壁管,包括镍合金,不锈钢,铝和碳钢,这些材料可用于各种应用。
a b s t r a c t用于1.0 m HCl和1.0 m HNO3溶液中铁,铜和碳钢的腐蚀。将从浆果和芒果叶提取的材料以不同的浓度添加到1摩尔的盐酸和硝酸的溶液中,表现出显着有效的耐铁,铜和碳钢的腐蚀性,以及我们从Galo中使用这些材料的材料和携带物的使用范围的样品,这些样品是在这些材料中使用的,并提取了这些天然材料的使用程度对于环境中可用的这些天然产物的油管管道腐蚀抑制剂已显示出极大的有效耐药性。已经研究了这些物质的温度和浓度对这些矿物质腐蚀的影响,研究表明,即使在低浓度达到50 ppm处,它们也会抑制腐蚀。
摘要。腐蚀是一个严重的问题,通常很难完全消除。腐蚀过程经历了许多反应,这些反应改变了金属表面和局部环境的组成和特性。发现有机和无机抑制剂等几种抑制剂很昂贵,有毒,并对环境造成负面影响,这些抑制剂限制了这些抑制剂对腐蚀的使用。在过去的几年中,研究人员将药物用作腐蚀抑制剂。使用药物作为腐蚀抑制剂的使用是无毒的,便宜的,并且对环境的负面影响可忽略不计。通过使用不同类型的药物(褪黑激素,头孢氨酸,曲马多等)作为多种金属等多种金属(如碳钢,碳钢和铝钢)进行了几项研究。研究表明,发现这些药物的抑制作用在金属表面上形成不溶性复合物,从而保护其免受腐蚀。通过使用减肥技术(WL),电力动力极化(PDP)测量,电化学抗性光谱(EIS),电化学频率调制(EFM)和线性抗性等方法,研究了不同药物的腐蚀抑制效率。通过扫描电子显微镜,X射线衍射和原子力显微镜研究了在添加药物之前和之后金属的表面形态。最近通过使用过期的Dapsone药物作为针对低碳钢的腐蚀抑制剂进行了研究工作。腐蚀速率随着抑制剂浓度的增加而降低。腐蚀速率随着抑制剂浓度的增加而降低。研究表明,在低碳钢表面形成改良的戴蓬酮药物的吸附膜会导致质量和电荷转移的阻塞,从而进一步导致腐蚀抑制。头孢氨酸药物对碳钢腐蚀(CS)的影响已通过体重减轻和电化学方法检查。EIS研究表明,抑制过程是通过电荷转移。 使用密度功能理论(DFT)方法进行药物分子的量子化学计算,并发现头皮肽是一种良好的耐碳钢腐蚀抑制剂。 总体而言,研究泄露使用药物作为腐蚀抑制剂的使用不仅是保护金属免受腐蚀的最佳选择,而且还导致对过期药物的废物管理。 本综述着重于近年来药物作为对各种金属的腐蚀抑制剂的利用。EIS研究表明,抑制过程是通过电荷转移。使用密度功能理论(DFT)方法进行药物分子的量子化学计算,并发现头皮肽是一种良好的耐碳钢腐蚀抑制剂。总体而言,研究泄露使用药物作为腐蚀抑制剂的使用不仅是保护金属免受腐蚀的最佳选择,而且还导致对过期药物的废物管理。本综述着重于近年来药物作为对各种金属的腐蚀抑制剂的利用。
这项研究工作调查了快绿(C 37 H 34 N 2 O 10 S 3 Na 2)的潜力作为1M HCl中低碳钢腐蚀的抑制剂。使用重量法进行了研究。研究了浓度,浸入时间和温度对腐蚀速率的影响。发现腐蚀速率从3.50 x 10 -4降低至1.8 x 10 -4 g/cm 2/h,因为快绿的浓度从1 v/v增加到5%。抑制效率(IE%)因此在室温(30 O C)的24小时内从浓度范围内(1-5 v/v%)内增加到65%。随着在室温下的研究中,腐蚀速率也从2.44 x 10 -4增加到9.03 x 10 -4 g /cm 2 /h。吸附研究证实,Langmuir等温线是解释快绿色对低碳钢的吸附特征的最佳模型,其相关效率(R 2)为0.9847。与吸附,ΔG°AD相关的标准自由能计算为-25.78 kJmol -1。该值高达-20 kJmol -1,表明快速绿色分子上的碳钢表面吸附基本上是通过物理吸附。可以得出结论,抑制剂充当混合类型抑制剂,因为实验数据适合Langmuir模型,这是化学吸附的特征。关键字:腐蚀,碳钢,快绿色,吸附,物理学简介
由于对有用燃料的需求增加,将重量的碳氢化合物升级到柴油和汽油等轻燃料已变得越来越流行。1石油行业中最困难的问题是生产高质量的燃料。2,3碳钢管道,储罐和重新建筑物的基础设施,这些基础设施携带原油4 - 6的腐蚀,这在石油和天然气行业是一个严重的问题,并且经常导致设备故障和失真。7,8金属与原油元素(如硫和萘有机酸)(如萘和萘酸)相互作用时,可能会发生腐蚀。9 - 11油井酸阳离子也会导致腐蚀。需要12,13进一步的研究来了解这些材料如何应对腐蚀性条件。14个碳钢(CS)已在石油的各种情况下大量使用
腐蚀是材料与环境相互作用而产生的降解,对大多数金属而言,腐蚀是不可避免的 (Barbara et al., 2006)。腐蚀可以定义为金属与周围环境发生化学或电化学反应而产生的破坏性侵蚀。腐蚀是一种代价高昂的自然破坏过程,与地震等自然灾害非常相似 (Winston et al., 2008)。然而,与这些自然灾害不同,腐蚀可以通过适当的措施来控制或预防。金属腐蚀通常通过电化学机制发生,金属原子由于金属与环境之间形成的电路而被去除。此外,腐蚀也可能由于与气体发生反应或暴露于高温、细菌、辐射而发生,