ntegrated Photonics已使数字通信时代依靠各级的光网络以非常高的速度和低成本传输数据。大规模数据中心需要高度集成的成本效益的光学通信解决方案,因为数据中心互连已成为主要成本因素之一。与光学互连相关的技术和经济必需品促进了当今普遍存在的1,300–1,600 nm范围内使用的两种综合光子技术平台的开发和快速成熟。这些平台通常用其材料基础来计数:(1)硅光子学和(2)基于磷化物(INP)基于磷化物(INP)的集成光子学。这两个平台的重要性远远超出了光电收发器和光学通信。硅光子学和基于INP的光子学都在Terahertz的产生和传感,高速信号处理以及潜在的神经形态计算中发现了应用。尽管硅光子学比INP整体光子学具有明显的优势,例如其可扩展性高达300毫米的晶片,并通过高速电子设备与高速电子设备协调,但使用INP 1、2实现了最终和基准的光电测量。基于INP的波导耦合光二极管,即使是几年前,也已经证明了170 GHz的3-DB带宽(F 3-DB),竞争激烈,竞争激烈,竞争势力为0.27 a w-1(参考文献3)。相比之下,在主要硅光子平台上可用的锗光二极管通常显示在50-70 GHz范围内的带宽(参考文献。4 - 7)。以外,具有F 3-DB≈120GHz和相当高的深色cur的细菌光电二极管的演示脱颖而出,由于测量限制8,关于带宽的不确定性8。在本文中,我们证明了一个真正的硅光子光子检测器,从光扣带宽和响应性方面接近最终性能,这是一种基于表面上种植的锗的硅波导偶联P – I-N光电二极管。我们的锗光电二极管显示超过260 GHz
利用三维受限磁控溅射源 (L-3DMS) 在低于 100 C 的温度下成功沉积了超薄锡掺杂结晶氧化铟 (ITO) 薄膜 (≤ 50 nm)。在低处理温度下沉积的超薄 ITO 薄膜的电阻率和迁移率分别约为 ∼ 5 × 10 − 4 · cm 和 > 30 cm 2 /Vs (厚度为 30 nm)。据信,利用 L-3DMS 沉积的超薄 ITO 薄膜的高质量与 L-3DMS 的高密度等离子体和低放电电压改善了 ITO 薄膜的结晶度和氧空位有关,这使得能够在低处理温度下形成晶体结构。关键词:透明导电氧化物 (TCO)、3-D 受限磁控溅射、ITO 薄膜、高等离子体密度、晶体结构、低温。
例如,全世界目前每年可开采约 7,000 吨钕,它是制造风力涡轮机电气系统的众多关键元素之一。世界银行(以及许多其他机构)设想的当前清洁能源情景将需要在未来几十年内增加 1,000%-4,000% 的钕供应量。8 虽然对绿色能源矿产需求的各种分析使用了不同的基本假设,但都得出了相同范围的结论。例如,用于制造发电太阳能半导体的铟的开采量需要增加多达 8,000%。用于电池的钴的开采量需要增长 300%-800%。9 用于电动汽车(更不用说电网)的锂产量需要增长 2,000% 以上。10 可持续未来研究所
摘要:对从南干区和卡纳塔克邦过渡带收集的根际和非裂圈土壤进行了研究。分析了这些土壤的微生物种群和酶活性。红色沙质壤土是该区域中发现的主要土壤类型。在过渡区的草际,微生物种群最高,在南方干燥区与凉鞋根际相当。细菌种群更多地在与草根际相当的凉鞋根际中。百分比的菌根定殖在凉鞋根际中最高。但是,在两种情况下,草中的定植与凉鞋相当。菌根孢子种群在凉鞋根圈中更多,在非河流圈区域中最少。碱性磷化酶活性遵循南方干燥区土壤的趋势相同的趋势,而在过渡区的情况下,这种根源的草的活性或多或少相似。
可再生能源技术的应用对于实现联合国可持续发展目标 (SDG) 至关重要,例如关于可负担清洁能源的 SDG7 和关于气候行动的 SDG13 1 。然而,生产可再生能源基础设施需要越来越多的材料,例如铟、镓和稀土金属。这可能会导致环境影响的取代而不是减少,因为不可持续的化石燃料开发将被不可持续的可再生能源关键材料开发 2 所取代。例如,用于低碳技术的金属矿石开采和加工对环境具有深远而广泛的影响(例如水、人类和生态毒性)3 。这可能会导致与关于清洁水的 SDG6、关于减少不平等的 SDG10 以及关于海洋和陆地环境自然保护的 SDG14 和 SDG15 1 产生权衡。更好地利用材料和产品的循环经济战略可以提供解决方案,符合关于可持续消费和生产的 SDG12 1,4。
锂离子电池 (LIB) 是当今世界上最有前途的储能设备之一。锂离子电池与其他类型的电化学电池一样,具有阳极和阴极电极,锂离子在充电和放电过程中分别嵌入和脱嵌在阳极和阴极电极中。通过开发创新类型的电极,锂离子电池的容量得到了提高。碳、金属/半导体、金属氧化物和金属磷化物/氮化物/硫化物基纳米材料由于其高表面积、低扩散距离、高电导率和离子电导率而提高了 LIB 的性能。纳米结构材料在质量传输方面具有显著优势,是锂离子电池领域一个快速增长的领域。本文讨论了基于过渡金属/半导体类型分类的阳极纳米材料,例如碳、硅、钛和锡基纳米材料。此外,还广泛解释了不同的电化学反应、阳极材料对 LIB 的比较影响及其应用。关键词
MIL-STD-171F 前言 本标准旨在建立表面处理系统代码,这些代码可链接或交叉引用用于表面处理和以其他方式处理金属和木材表面的特定规格信息。它还可作为选择合适的表面处理材料、程序和系统的一般指南。它涵盖有机(油漆、清漆等)和无机(金属镀层、磷化金属等)涂层。特定于各个机构的专用系统由这些组织发布的图纸、规范和标准涵盖,并作为本标准的补充。此类采购文件应直接引用适用的规范。例如,MIL-STD-186 涵盖陆军导弹武器系统的喷漆和其他表面处理。表格中的表面处理系统代码编号在本标准的未来修订中不得更改,因为这些代码编号应在图纸、合同和最终项目规范中引用。如果 MIL-STD-171 先前版本中的系统已从修订中删除,则表格中会注明要用作替代的系统。为了方便引用,所有程序,无论是仅仅清洁表面、沉积薄膜还是执行其他所需功能,都归类为“表面处理”。作为如何使用此标准的示例,假设要用 0.001 英寸(25 微米)厚的铬化锌板进行表面处理。转到表 II,无机表面处理,电镀,我们发现此表面处理的名称为 1.9.2.1。因此,图纸上的说明将是:MIL-STD-171 的表面处理 1.9.2.1。在这种特殊情况下,无需提及任何初步步骤,例如清洁,因为 ASTM B633,表面处理 1.9.2.1 中引用的钢铁锌镀层电镀锌,对此步骤规定如下:“它(基础金属)应经过必要的清洁、酸洗和电镀程序,以产生下文规定的沉积物”。再次,假设 155 毫米弹体将用橄榄褐色无光泽搪瓷完成。根据表 XIII,此饰面为系统 20.2。假设涂漆准备工作为磷化(饰面 5.1.1)。饰面涂层将是磷酸盐涂层加上符合 MIL-DTL-11195 的搪瓷。因此,图纸上的说明将是:饰面 5.1.1 加上 MIL-STD-171 的 20.1,橄榄褐色 No. 34088 符合 FED-STD-595。iii
摘要:在光学纳米结构的连续体(BIC)中发现结合状态已引起了重大的研究兴趣,并发现了光学领域的广泛应用,从而导致了实现High-Q(质量)FANO共振的有吸引力的方法。在此,通过有限元方法(FEM)设计和分析了由MGF 2底物上的四个磷化物(GAP)圆柱组成的全dielectric跨表面。通过打破平面的对称性,特别是通过将两个圆柱体移动到一侧,可以实现从对称性保护的BIC到Quasi-BIC的过渡。此转变使尖锐的双波段FANO共振在1,045.4 nm和1,139.6 nm的波长下激发,最大Q因子分别达到1.47×10 4和1.28×10 4。多极分解和近场分布表明,这两个QBIC由电动四极杆(EQ)和磁四极杆(MQ)主导。此外,可以通过更改入射光的极化方向来实现双向光学切换。结果,优点(FOM)的最大灵敏度和数字为488.9 nm/riU和2.51×10 5
10 世界银行报告(2020 年)。11 同上。这与部署或使用这些技术所需的相关基础设施(例如输电线或电动汽车底盘)无关,包括 17 种范围内的矿物。12 荷兰可再生电力发电的金属需求(2018 年)莱顿大学。13 世界银行报告(2020 年);欧盟战略技术和部门的关键原材料(2020 年)欧盟委员会(“关键原材料报告”)。14 矿产资源:科学家说,枯竭只是一个神话(2017 年)日内瓦大学。15 但并非所有矿产,例如铁、铟和钴,其能源应用的估计需求都超过了已知储量。16 钕是世界银行报告中确定的唯一未包括在此处的资源;与其他资源不同,美国地质调查局或欧盟联合研究委员会没有报告钕的储量。