9 大希腊 卡坦扎罗大学 UNICZ 大学 10 巴里大学 - 阿尔多莫罗 UNIBA 大学 11 帕尔马大学 - 分支 1 UNIPR 大学 12 佛罗伦萨大学 UNIFI 大学 13 IRCCS 圣马蒂诺综合医院 HSM 医院 14 IRCCS 博洛尼亚神经科学研究所 ISNB 医院 15 比萨圣安娜高等研究院 SSSA 医院 16 Bambino Gesù 儿童医院 OPBG 医院 17 欧洲脑研究所 Rita Levi-Montalcini EBRI 基金会 18 IRCCS SYNLAB SDN SYNLAB 医院 19 Telethon 基金会 ETS TIGEM 基金会 20 Don Carlo Gnocchi 基金会 ONLUS-IRCCS FDG 医院 21 IRCCS 圣拉斐尔 SR 医院 22 Dompè Farmaceutici DOMPE' 公司 23 Alfasigma ALFASIGMA 公司 24 ASG 超导体 ASG 公司 25 TAKIS Srl TAKIS 公司 表 A1:合作伙伴名单
摘要:有许多关于如何由神经元控制行为的理论。测试和完善这些理论将很大程度上促进。此外,模拟神经系统本身就是系统神经科学中的大梦想之一。但是,这样做需要我们确定每个神经元的输出如何取决于其输入,这是我们称之为反向工程的过程。目前对哺乳动物神经系统的关注,但是这些大脑令人难以置信,仅允许记录微小的子系统。在这里,我们认为,系统神经科学的时间已经成熟,可以努力进行较小的系统,而秀丽隐杆线虫是理想的候选系统,因为既定的餐水生理学技术可以捕获和控制每个神经元的活性并扩展到成千上万的实验。可以组合跨种群和行为的数据,因为整个个体神经系统在形式和功能上都在很大程度上保守。现代基于机器学习的建模应该可以对秀丽隐杆线虫的脑状态和行为的令人印象深刻的广度进行模拟。对整个神经系统进行逆向工程的能力将使人工智能系统和所有系统的设计有益于神经科学的设计,从而实现基本见解以及新的方法来研究逐渐更大的神经系统。
6 神经免疫学实验室,IRCCS Mondino 基金会,帕维亚,意大利, 7 神经病学和中风科,佩斯卡拉“ Spirito Santo ”医院,佩斯卡拉,意大利, 8 UOC Neurologia O.S.A.- 意大利帕多瓦大学医院,9 意大利维琴察圣博尔托洛医院 AULSS8 Berica 神经内科,10 意大利布雷西亚大学临床和实验科学系神经内科,11 意大利布雷西亚布雷西亚大学医院 ASST Spedali Civili 持续护理和虚弱科神经内科,12 意大利布雷西亚大学数字神经病学和生物传感器实验室,13 法国副肿瘤神经系统综合征和自身免疫性脑炎参考中心,里昂临终关怀医院,神经病学医院,布隆,法国,14 MeLiS - UCBL-CNRS UMR 5284 - INSERM U1314,里昂第一克劳德伯纳德大学,里昂,法国,15 神经内科,Hôpital Pitié Salpétrière,Assistance Publique des Ho ˆpitaux de Paris,巴黎,法国
抽象的生物电子医学通过感测,处理和调节人体神经系统中产生的电子信号(被标记为“神经信号”)来治疗慢性疾病。虽然电子电路已经在该域中使用了几年,但微电子技术的进展现在允许越来越准确且有针对性的解决方案以获得治疗益处。例如,现在可以在特定神经纤维中调节信号,从而靶向特定疾病。但是,要完全利用这种方法,重要的是要了解神经信号的哪些方面很重要,刺激的效果是什么以及哪些电路设计可以最好地实现所需的结果。神经形态电子电路代表了实现这一目标的一种有希望的设计风格:它们的超低功率特征和生物学上可行的时间常数使它们成为建立最佳接口到真正神经加工系统的理想候选者,从而实现实时闭环与生物组织的闭环相互作用。在本文中,我们强调了神经形态回路的主要特征,这些电路非常适合与神经系统接口,并展示它们如何用于构建闭环杂种人工和生物学神经加工系统。我们介绍了可以实施神经计算基础的示例,以对这些闭环系统中感应的信号进行计算,并讨论使用其输出进行神经刺激的方法。我们描述了遵循这种方法的应用程序的示例,突出了需要解决的开放挑战,并提出了克服当前局限性所需的措施。
近年来,肠道菌群与中枢神经系统 (CNS) 发育之间的关联引起了广泛的研究关注。有证据表明,CNS 和肠道菌群通过脑肠轴进行双向交流。作为一个长期而复杂的过程,CNS 发育极易受到内源性和外源性因素的影响。肠道菌群通过调节神经发生、髓鞘形成、神经胶质细胞功能、突触修剪和血脑屏障通透性来影响 CNS,并与各种 CNS 疾病有关。本综述概述了肠道菌群与 CNS 发育阶段(产前和产后)之间的关系,强调了肠道微生物的不可或缺的作用。此外,本综述还探讨了肠道菌群在神经发育障碍(如自闭症谱系障碍、雷特综合征和安格曼综合征)中的影响,为早期发现、及时干预和创新治疗提供了见解。
在我们的诊所中,我们培训和教育由才华横溢的医疗保健专业人员组成的跨职能团队,为世界各地的人们提供神经塑性疗法。在过去的十年中,我们高技能,多学科团队已经开发了国际研究合作,着重于研究和定义新的神经功能优化治疗方法。
摘要:神经科学的主要目标是了解神经系统或神经回路组合如何产生和控制行为。如果我们能够可靠地模拟整个神经系统,从而复制大脑对任何刺激和不同环境的反应动态,那么测试和改进我们的神经控制理论将变得非常容易。更根本的是,重建或建模一个系统是理解它的一个重要里程碑,因此,模拟整个神经系统本身就是系统神经科学的目标之一,实际上是梦想。要做到这一点,我们需要确定每个神经元的输出如何依赖于某个神经系统中的输入。这种解构——从输入输出对理解功能——属于逆向工程的范畴。目前对大脑进行逆向工程的努力主要集中在哺乳动物的神经系统上,但这些大脑极其复杂,只能记录微小的子系统。我们在此认为,现在是系统神经科学开始齐心协力对较小系统进行逆向工程的时候了,而秀丽隐杆线虫是理想的候选系统。特别是,已建立并不断发展的光生理学技术工具包可以非侵入性地捕获和控制每个神经元的活动,并扩展到大量动物群体的数十万次实验。由于个体神经元的身份在形式和功能上基本保持不变,因此可以合并不同群体和行为的数据。然后,基于现代机器学习的模型训练应该能够模拟秀丽隐杆线虫令人印象深刻的大脑状态和行为范围。对整个神经系统进行逆向工程的能力将有利于系统神经科学以及人工智能系统的设计,从而为研究越来越大的神经系统提供根本性的见解和新方法。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
原发性中枢神经系统淋巴瘤(PCNSL)是与中枢神经系统相关的非霍奇金淋巴瘤(NHL)。大多数患者最终出现复发/难治性(R/R)PCNSL,PCNSL的总体预后仍然令人沮丧。最近,基因测序,转录组测序和单细胞测序平台提供了大量数据,揭示了PCNSL中发病机理和耐药性的基础机制,包括肿瘤细胞中NF-K B信号途径的激活,肿瘤细胞,肿瘤的异质性和免疫质量tumoremronosemronosmorodronenment。PCNSL分子病理学研究的进步已导致确定新的治疗靶标并开发新的药物。新的治疗策略,例如创建小分子靶向剂,免疫调节药物,免疫检查点抑制剂和嵌合抗原受体T(CAR-T)细胞疗法,为PCNSL患者带来了新的希望,尤其是R/R PCNSL。本综述提出了PCNSL治疗,审查和讨论有针对性治疗和免疫疗法的效率和挑战的最新进展,并为PCNSL治疗策略的未来发展提供了前景。
抽象周围神经系统(PNS)和中枢神经系统(CNS)啮齿动物髓素(由不同的细胞类型产生)具有共同的形态和功能特征,尽管它们的主要积分膜蛋白是完全不同的。两种类型的髓磷脂how- ever,包含四种髓磷脂碱性蛋白(Mbps),它们具有相似的免疫化学和电泳特性。我们已经分离并表征了与大鼠mRNA相对应的cDNA克隆,这些cNS和PNS髓磷脂中发现的小Mbps(SMBP)。对这些克隆的序列分析表明,神经系统的两个分裂中的SMBP均由相同的核苷酸序列编码,这表明它们是在少突胶质细胞和Schwann细胞中表达的相同基因的产物。与CNS SMBP cDNA作为探针中的点印刷杂交实验,结果表明,在CNS髓磷脂中,MBP mRNA水平高20倍,而总脑干mRNA中的MBP mRNA水平高20倍。还发现,在含有少突drocytes和schwann细胞的视神经和坐骨神经中,MBP mRNA的水平分别高(分别为4倍和2倍)。印迹杂交实验表明,源自大鼠SMBP cDNA的编码区域的探针杂交与人视神经中存在的同源mRNA(= 2.6千行酶),该探针无法检测到从3'未转移的区域中得出的探针。这种编码区域序列的保守性与两种物种中MBP报告的高度同质氨基酸序列一致。