阿尔茨海默氏病(AD)是一种痴呆症的影响,在神经病理学上以淀粉样蛋白β(aβ)斑块和神经纤维缠结(NFT)的沉积为特征,而这反过来会导致神经变性并引起神经变性和临床症状(1)。aβ来自β和⋎泌尿酶对淀粉样蛋白前体蛋白(APP)的顺序加工。App肽,例如β1-42或β1-40,可以通过诱导氧化应激,抑制膜通道的功能或影响运输/排序机制,形成寡聚物,小聚集体或纤维细胞和损伤神经元。据信,β1-42引起tau的高磷酸化,这又导致纤维聚集和神经毒性(2)。在过去的几十年中,旨在阐明AD病因并促进新疾病修饰药物的发展的研究过度生长。除了这些巨大的效果外,对AD病因和致病性级联反应的全部理解仍然隐藏起来。几项研究表明,通常在AD患者的大脑中确实存在其他错误折叠的蛋白质,而不是例外(3)。已经假设病理错误折叠的蛋白可能会促进协同病理学和相互错误折叠和聚集(4)。由于异常蛋白质触发的致病机制的相互影响可以塑造AD,导致多种神经病理变体。在本文中,我们假设AD变体是由对复杂生物网络观察到的非线性调节引起的(5)。
瞬态受体潜在阳离子通道亚家族V成员1(TRPV1)是Ca 2+渗透性的非选择性阳离子通道,主要在感觉神经纤维中发现。先前的研究集中于疼痛传播。然而,最近的研究发现,除了与疼痛相关联,TRPV1通道还在免疫调节中起作用,其失调通常会影响类风湿关节炎(RA)的发展。对机制的透彻理解将有助于设计新的TRPV1靶向药物并改善RA的临床效率。在这里,我们提供了一个更新且全面的概述,概述了TRPV1通道如何本质地调节神经元和免疫细胞,以及如何外在影响血管生成和骨骼破坏的Synoviocytes或软骨细胞中TRPV1通道的变化。在针对TRPV1治疗炎症性关节炎的研究中已取得了快速的进步,但是关于RA的治疗作用,仍然存在着广泛的领域。我们提出了针对RA治疗中TRPV1通道的策略,总结了当前研究中的困难和有希望的进步,以便更好地了解TRPV1通道在RA病理学中的作用,这可以加速TRPV1靶向调节剂的开发,以在更有效的RA Therapies设计和开发更有效的RA Therapies。
一种神经系统疾病,其特征是腿部和手臂逐渐衰弱,感觉功能受损。这种疾病有时被称为慢性复发性多发性神经病。慢性表示该病持续很长一段时间。炎症表示神经损伤是由于炎症而发生的,炎症是一个涉及免疫系统的复杂过程。脱髓鞘表示损伤影响神经纤维周围的蛋白质涂层(髓鞘)。多发性神经根神经病意味着这种疾病影响了不止一条神经。利妥昔单抗是一种针对 CD-20 的单克隆抗体,CD-20 是一种广泛表达于 B 细胞的细胞表面标志物,可导致 B 细胞耗竭。MMN 是一种影响人体运动神经的免疫介导性神经病。这些神经控制肌肉,这种疾病使它们难以发送电信号,导致手臂和腿部感到虚弱,引起肌肉痉挛、痉挛和抽搐。MMN 并不致命,在大多数情况下,治疗可以使肌肉更强壮,尽管这种疾病仍然缓慢进展。血管炎周围神经系统血管的炎症,也称为非系统性血管炎性神经病 (NSVN),血管炎仅限于周围神经系统 - 神经系统的一部分,由大脑和脊髓外部的神经和神经节组成。
抽象的背景:未成熟的恒牙中的纸浆再生取决于落叶牙齿的果肉是否可以在移植后与周围组织建立早期血液供应连接。这项研究旨在探索Matrigel移植后对早期血液供应的影响。方法:准备了恒牙的空根管,并将其分为3组(n = 18)。A组(落叶纸浆组):提取落叶牙齿的果肉,将其移植到空根管中,然后皮下植入裸鼠。落叶纸浆/母质组作为B组,空根组为组。结果:植入后8周进行组织化学和免疫组织化学检查。两组A和B组在根管中都涉及纸浆组织和纤维结缔组织。免疫组织化学染色表明,人体血小板内皮细胞粘附分子1(CD31)阳性细胞分散在纸浆组织区域上,而小鼠CD31阳性细胞则散布在结缔组织区域。同时,人Nestin免疫组织化学为阳性,阳性细胞分布在纸浆组织中。落叶牙髓/母质组的微血管计数明显更高和神经纤维的光密度(p <0.05)。结论:这项研究表明,矩阵可以在移植后促进原发性牙齿牙髓生存力。
引言青光眼是指各种眼睛条件,其标志着眼睛上的压力增加(称为眼压)(IOP)和对视神经的损害。这种情况会导致视力逐渐降低,如果未经处理,则可能最终导致完全失明[1,2]。青光眼是各种各样的神经退行性疾病,其特征在于视觉神经炎的异常形式,逐渐导致视网膜神经纤维层的恶化和最终死亡。这种状况最终导致大量视力障碍[3]。眼室的机械转移过程的故障会导致结构改变,水性幽默排水不良,以及青光眼中的小梁造成分解。视网膜刺激和Muller细胞,小胶质细胞以及星形胶质细胞的激活是由这种功能障碍引起的。这些变化最终可能导致渐进的视力丧失[4]。被称为原发性先天性青光眼(PCG)的疾病是严重的视觉障碍,这是由于前室角和视神经头的发展引起的。通常,它出现在怀孕的第九个月。没有PCG的已知病因,它与任何其他发育障碍无关。光敏感性,眼内压力增加,前巩膜的减弱和延伸,哭泣过多,眼睑的炎症,视神经萎缩,角膜雾霾以及地球肿大是症状。并发症可能包括辨别膜恶化和结膜红斑。PCG可以偶发地发生或在家庭中运行,建议遗传咨询以识别有缺陷基因的载体并防止进一步的视觉障碍[5,6]。
阿尔茨海默氏病(AD)的特征是淀粉样蛋白β(Aβ)斑块和神经纤维缠结(NFTS)的进行性认可,这是AD发病机理的核心。神经薄缠结由tau蛋白纤维多孔组成,尤其是配对的螺旋纤维(PHFS)和直纤维(SFS)。在AD脑1-6的皮质提取中,它们的相对丰度先前已被描述为约90%的PHF和10%SF。具有β和tau配体的正电子发射断层扫描(PET)成像增强了对AD进展的诊断准确性和理解7。第一代tau-pet配体能够在体内检测tau缠结,并具有预测性的脑萎缩和认知能力下降的能力8 - 14。在此基础上,已经开发了第二代tau-pet配体,以改善特异性,药代动力学和亲和力。这些配体基于优化的化学结构,例如吡啶吲哚,苯基苯基苯基苯并苯二唑和喹啉/苯二唑唑衍生物15 - 17。特定于[18 f] MK-6240(如[18 f] MK-6240)(如[18 f] MK-6240)的吡咯吡啶基胺衍生物与第一代示踪剂相比,与Tau Tangles的结合优越。第二代tau-pet配体的发展,例如[18 F] MK-6240,对于早期AD检测,疾病分期和治疗干预评估至关重要。18 - 23。
临床背景/疾病概述从历史上看,AD被定义为认知障碍的临床综合征,在脑组织中具有两个标志性神经病理学:神经(淀粉样蛋白)斑块和神经纤维纤维缠结(NFTS)由TAU蛋白组成。这些病理学底层神经病理明确的诊断数十年,并构成了最初由美国国家老化研究所和阿尔茨海默氏症协会(NIA-AA)发表的诊断标准的基础。1,2在组织评估之外,对阿尔茨海默氏病的生活诊断传统上主要是基于症状表现和消除认知和神经行为变化的替代病因。具有高灵敏度和特异性的宠物示踪剂和CSF分析的出现,可检测淀粉样蛋白和TAU病理学,促进了对AD生物学定义的发展。AD的生物结构最初是基于评估三种主要病理的:淀粉样蛋白斑块,由Tau蛋白组成的NFT和NeuroDegeneration,即NIA-AA最初提出的作为研究框架的“ ATN”模型。3,4 ATN构建体允许基于生物标志物的疾病谱分类,即阿尔茨海默氏症的连续体,其中包括淀粉样蛋白相关的病理学变化和AD本身。前者仅由淀粉样蛋白病理学的证据定义,而AD是由淀粉样蛋白和TAU病理学的证据定义的,无论有无神经变性。2
抽象的生物电子医学通过感测,处理和调节人体神经系统中产生的电子信号(被标记为“神经信号”)来治疗慢性疾病。虽然电子电路已经在该域中使用了几年,但微电子技术的进展现在允许越来越准确且有针对性的解决方案以获得治疗益处。例如,现在可以在特定神经纤维中调节信号,从而靶向特定疾病。但是,要完全利用这种方法,重要的是要了解神经信号的哪些方面很重要,刺激的效果是什么以及哪些电路设计可以最好地实现所需的结果。神经形态电子电路代表了实现这一目标的一种有希望的设计风格:它们的超低功率特征和生物学上可行的时间常数使它们成为建立最佳接口到真正神经加工系统的理想候选者,从而实现实时闭环与生物组织的闭环相互作用。在本文中,我们强调了神经形态回路的主要特征,这些电路非常适合与神经系统接口,并展示它们如何用于构建闭环杂种人工和生物学神经加工系统。我们介绍了可以实施神经计算基础的示例,以对这些闭环系统中感应的信号进行计算,并讨论使用其输出进行神经刺激的方法。我们描述了遵循这种方法的应用程序的示例,突出了需要解决的开放挑战,并提出了克服当前局限性所需的措施。
阿尔茨海默氏病(AD)是中年和老年人群中中枢神经系统最常见的疾病之一。它是一种神经退行性疾病,其主要临床症状包括既定记忆的丧失,学习能力下降以及β-淀粉样蛋白肽的积累。该疾病通常伴随着神经退行性的变化和神经纤维缠结的形成。但是,可用于AD的临床治疗的药物数量仍然有限。当前,现有药物无效地完全治愈了疾病或阻止其进展。由于其出色的生物相容性和生物降解性,聚合物已被广泛用作各种领域的药物输送载体,包括癌症治疗和伤口愈合。使用聚合物可以实现靶向药物递送和长时间的释放纤维。近年来,研究人员在利用聚合物(例如聚乙烯乙二醇,聚乙二醇(乳酸 - 乙醇酸)(PLGA)(PLGA)(CS)等聚合物方面取得了重大进展。此外,已经开发了许多具有固有治疗特性的聚合物,包括已经销售的GV-971以及PLGA和CS寡糖等实验性聚合物。本综述总结了过去几年聚合物在AD治疗中的应用,并强调了他们当前的局限性,以帮助研究人员更好地了解聚合物开发中当前的进步并确定未来的研究方向。
摘要:神经变性是神经元结构或功能的逐渐丧失,最终可能涉及细胞死亡。大脑中最常见的神经退行性疾病发生在阿尔茨海默氏病(AD),这是痴呆症的最常见原因。它最终导致神经元死亡,从而损害了中央神经系统或外周神经系统的正常功能。AD的发作和患病率涉及异质性病因,无论是遗传倾向,神经代谢失功或生活方式而言。全球相关性估计超过4500万人。AD的迅速增加导致了针对发现AD的利润丰厚的研究工作的增加。AD的神经病理学包括神经递质的可用性和大脑中重要的神经营养因素的缺乏,细胞外β-淀粉样蛋白斑块沉积和细胞内神经纤维纤维纤维缠结的缠结。使用合成药物的当前药物干预措施表现出抗药性和毒性问题。这导致了人们对植物化学物质自然预期的新药物治疗候选者的追求。本综述旨在提供对具有各种潜在AD目标活动的有前途的Phyto组件实体的精明描述。因此,自然疗法可以与合成化学治疗剂相结合,以更长的患者生存。