我们通过实验研究了平面二维阵列鼓面模式的电磁感应透明冷却,其中 Penning 阱中存储了多达 N ≈ 190 Be + 离子。对于所有 N 个鼓面模式都观察到了显著的亚多普勒冷却。对质心模式的定量测量表明接近基态冷却,运动量子数为 ¯ n ¼ 0 。3 � 0 。2 在 200 μ s 内获得。 测得的冷却速度比单粒子理论预测的要快,与量子多体计算一致。对于较低频率的鼓面模式,定量温度测量受到频率不稳定性的限制,但强烈建议全带宽接近基态冷却。这项进展将极大地提高大型捕获离子晶体在量子信息和计量应用中的性能。
加湿和洗涤谷物是准备用于研磨的谷物,改善其食物使用程度的过程。在湿润和随后的落叶期间,谷物中发生了物理和生物学变化,因此,壳与谷物的分离促进了胚乳的较小损失。洗涤时,清洁谷物的表面,释放出沉重和轻质的杂质和微弱的颗粒,并去除微生物。要在面粉厂润湿并清洗谷物,它们使用:用冷或温水润湿谷物的机器,以便在水热处理过程中改变其物理特性;在将各种农作物加工成谷物时,在剥离或变平之前,用蒸汽润湿谷物的机器;分离的杂质的机器与流体动力学特性不同[1]。该行业生产两种类型的加湿机器:用于在滴水状态下添加水的水喷射和喷水,用于在喷雾器中添加水,以及与垂直挤压柱的混合洗衣机[2-5]。在面粉铣削行业中使用喷气机的使用使得可以与谷物量成比例地准确剂量水。但是,没有实现其表面均匀的润湿,因此需要设备以允许将潮湿的谷物混合物进行额外混合。在喷雾状态下将水添加到谷物中的机器中实现了晶粒表面的更均匀的润湿[6-8]。水喷水
在所有量子系统中,囚禁离子量子比特已证明具有最高保真度的量子操作 1–4 。因此,如果能够应对集成和扩展相关技术的挑战,它们将成为可扩展量子信息平台的有希望的候选者。这些挑战中最主要的是这种激光器的集成,这不仅是冷却离子所必需的,而且通常也是操纵量子比特所必需的。目前,正在研究两种主要方法来解决这个问题。首先,如果硅光子学中展示的能力可以扩展到与原子离子量子比特所需的可见光和紫外波长兼容的材料,那么集成光子学可以提供一种可扩展的方式来传输必要的激光器 5,6 。其次,人们正在探索几种无激光操控原子离子量子比特的方案,这些方案涉及微波场与强静态磁场梯度 8-10、微波磁场梯度 11-13、微波修饰态 14 或运动模式频率附近振荡的磁场梯度 15,16 的配对。集成光学和微波控制都需要离子阱制造技术的进步才能真正实现可扩展性。
高能离子的非弹性能量沉积是许多工业规模应用(如溅射和离子注入)的决定性量,但其由动态多粒子过程控制的底层物理通常仅被定性地理解。最近,对单晶靶材进行的透射实验(Phys. Rev. Lett. 124, 096601 和 Phys. Rev. A 102, 062803)揭示了沿不同轨迹的低能离子(比质子重)的非弹性能量损失的复杂能量缩放。我们使用类似蒙特卡洛的二元碰撞近似代码,并配备与撞击参数相关的非弹性能量损失模型,以评估这些情况下局部贡献对电子激发的作用。我们将计算出的轨迹的角强度分布与实验结果进行了比较,其中 50 keV 4 He 和 100 keV 29 Si 离子在飞行时间装置中传输通过单晶硅 (001) 箔(标称厚度分别为 200 和 50 nm)。在这些计算中,我们采用了不同的电子能量损失模型,即轻弹丸和重弹丸的局部和非局部形式。我们发现,无论晶体相对于入射光束的排列如何,绝大多数弹丸最终都会沿着它们的轨迹被引导。然而,只有当考虑局部电子能量损失时,模拟的二维图和能量分布才会与实验结果高度一致,其中引导会显著减少停止,特别是对于较重的弹丸。我们通过评估离子范围与随机表面层厚度的非线性和非单调缩放来证明这些影响与离子注入的相关性。
我们提出了一种实现拓扑离散时间量子行走的方案,该方案由单个捕获离子执行一系列自旋相关的翻转位移操作和量子硬币抛掷操作组成。结果表明,当行走发生在相干态空间中时,可以通过测量平均投影声子数来提取体拓扑不变量的信息。有趣的是,我们的离散时间量子行走所具有的特殊手性对称性简化了测量过程。此外,我们通过引入动态无序和退相干证明了此类体拓扑不变量的稳健性。我们的工作提供了一种测量离散时间量子行走中体拓扑特征的简单方法,可以在单个捕获离子系统中通过实验实现。
成功治疗癌症的一个主要混杂问题是抗治疗剂和方案的肿瘤细胞群体存在。虽然巨大的努力一直在理解对每种传统和有针对性治疗的耐药性的生化机制,但对问题的更广泛的方法可能从认识到现有的抗癌剂几乎通过细胞凋亡几乎完全引起其细胞毒性作用的认识而出现。考虑到癌细胞颠覆凋亡死亡的众多机制,一种有吸引力的替代方法将利用编程的坏死机制来促成诱导细胞凋亡剂的侧键治疗性。溶酶体细胞死亡(LCD)是一种编程的坏死细胞死亡机制,在溶酶体的极限膜的妥协中参与,这一过程称为溶酶体膜通透性(LMP)。在LMP上将溶酶体成分释放到细胞质中,触发生化级联反应,导致质膜破裂和坏死细胞死亡。有趣的是,细胞转化的过程似乎使肿瘤细胞的溶酶体膜比非转化细胞更脆弱,从而为药物发育提供了潜在的治疗窗口。在这里,我们概述了LMP和LCD的概念,并讨论了代理参与这些过程的策略。重要的是,现有的阳离子两亲性药物的潜力存在,例如抗抑郁药,抗生素,抗心律失常和利尿剂,以重新使用,以使LCD参与治疗耐药性肿瘤细胞种群。
摘要:提出了一种方法和必要的分析设备,用于从土壤和水性培养基中的硫酸盐离子进行质量定量测定,并提出了水性培养基中的硫酸盐离子,其中包括以下事实,即将已知量的2-水性氯化氯化物含有氯化氢添加到分析样品的等分样品中。所得的不溶性硫酸钡化合物降低了氯化钡的初始浓度。在特殊设计的火焰分光光度法分析仪上确定溶液中剩余的氯化钡量。这使您可以计算与钡相关的硫酸盐离子的量,该硫酸盐是由设备程序自动执行的。通过所提出的水样中提出的方法可靠确定的硫酸盐离子浓度范围为10至100 mg/dm 3。可靠确定的从0.2至2.4 c(1/2SO4)mol/dm 3(从10到115 mg/dm 3)的土壤提取物中硫酸盐离子的浓度范围。必须用蒸馏水多次将较高浓度的硫酸盐离子稀释。该方法使确定水土壤提取物,淡水储层和河流,地下来源,自来水,沉积物,被工业企业的硫酸排放污染的沉积物是可能的。该方法非常简单,准确且富有成效。该方法由国家乌拉尔研究所(MVI-66373620-007-2018)认证,并由联邦技术法规和计量署(RosStandart)批准,作为No.253.0080/ra。RU.311866/2019。 专利号 2681855在俄罗斯联邦知识产权服务公司的优先级,日期为2017年9月15日的优先级,用于确定硫酸盐离子形式的硫酸盐在土壤中的硫酸盐离子的形式,并从土壤中及其所需的设备确定。 在这些物体中确定硫酸盐离子的详细方法在书中发表在《开放媒体:“使用流动分析技术对土壤,植物和水生环境的农业化学和化学参数的确定”,由俄罗斯科学院学院院士编辑。RU.311866/2019。专利号2681855在俄罗斯联邦知识产权服务公司的优先级,日期为2017年9月15日的优先级,用于确定硫酸盐离子形式的硫酸盐在土壤中的硫酸盐离子的形式,并从土壤中及其所需的设备确定。在这些物体中确定硫酸盐离子的详细方法在书中发表在《开放媒体:“使用流动分析技术对土壤,植物和水生环境的农业化学和化学参数的确定”,由俄罗斯科学院学院院士编辑。
摘要:纳米纤维素是一种基于生物的材料,在水纯化领域具有巨大的潜力。可能用作从溶液中去除金属离子的关键吸附剂材料。然而,尚不清楚吸附在纤维素表面上的金属离子的结构。这项工作的重点是使用异常的小角X射线散射(ASAXS)定量地确定带负电荷的箱子型纤维素纳米晶体(CNC)的不同货架的金属离子的三维分布。这些分布会影响这些材料中的水和离子通透性。数据表明,将CNC表面的羧酸盐密度从740 mmol/kg增加到1100 mmol/kg改变了吸附离子的结构的性质,从单层变成了单层结构。单层在CNC纳米颗粒周围建模为船尾层,而多层结构则建模为纳米颗粒周围柱状层顶部的弥漫层。在船尾层中,最大离子密度从1680升至4350 mmol的RB + /(CNC的kg),随着纳米颗粒表面上的羧酸盐密度的增加。此外,数据表明,CNC可以利用多种机制(例如静电吸引力和交际效应)来吸附不同价值的植物。通过了解吸附金属离子的空间组织,可以进一步优化基于纤维素的吸附剂的设计,以提高分离应用中的吸收能力和选择性。关键字:纤维素纳米晶,吸附,异常小角X射线散射,吸附剂,水净化,离子交换a
本文的目的是对离子阱量子计算机的操作进行一般性描述,从一维陷阱中离子的限制到逻辑门的实现。我们从通过谐波势限制离子的保罗离子阱的描述开始,然后描述了如何通过与外部激光产生的电磁场相互作用来改变离子的内部状态。我们详细研究了主要类型的单量子比特门和两种类型的多量子比特 CNOT 门,即 Cirac-Zoller 门和 Mølmer-Sørensen 门。再次,这种门的实现已经在囚禁离子计算机的具体情况下进行了描述。在最后一部分,我们介绍了 IonQ 公司在线提供的真实离子阱处理器上的量子算法的实现。具体来说,准备并测量了两种类型的量子态:贝尔态和更一般的 GHZ 态。
碘化物类似物的晶体结构表明:• 萘发色团彼此垂直 • 相邻萘的 pi 轨道之间的电子相互作用非常小