结果:根据体重的重量分类为体重(男性:7.8±0.8,女性:16.65±1.0),超重(男性:28.89±1.01,女性:29.78±1.02):29.78±1.02),肥胖I级I级(男性:30.30±0.9,女性:30.30±0.9,女性:31.6±0.7),女性III(31.6±0.7),均为3.0.3.0.3.0.0.3.0.3.0.02. 3.0.02. 3.0.02. 3.0. 3. 3.0. 3. 3.0.3工作量的职业和影响会引起压力对他们的睡眠时间。劳动者(男性)等职业的参与者的工作时间很长(9-10小时),睡眠持续时间较小(3-6小时)。类似地,在退休之前必须辞职的私人雇员,商人,女教师,男性和女性,从事家族企业的特定裤子,私人雇员,女教师,男性和女性,也患有睡眠障碍和睡眠持续时间较小(3-6小时),并在(21-30)之间进行分级。由于压力和睡眠效率低下,它们倾向于不规则地吃掉,并且按照EEQ的标准被归类为情感和情感上的食客。由于饮食失调,他们被归为超重,肥胖的I和III。男学生和女学生也患有压力引起的睡眠障碍和6小时的睡眠持续时间,但是体重不足,但女性往往不规则地吃掉。
Xiongnu建立了第一届游牧帝国大国,从而控制了东部的欧亚大草原。公元前200年至100年。 最近的考古研究确定了整个帝国的遗传多样性的极端水平,证实了Xiongnu帝国多种族的历史记录。 但是,这种多样性是如何在当地社区层面或社会政治地位结构的。 为了解决这个问题,我们调查了帝国西部边境的贵族和地方精英公墓。 分析来自18个人的基因组广泛数据,我们表明这些社区内的遗传多样性与整个帝国相当,并且在大家庭中也观察到了高度的多样性。 遗传杂种在最低的地位个体中最高,这意味着多样的起源,而更高的地位个体则具有较少的遗传多样性,这表明精英状况和权力集中在更广泛的Xiongnu人群的特定子集中。公元前200年至100年。最近的考古研究确定了整个帝国的遗传多样性的极端水平,证实了Xiongnu帝国多种族的历史记录。但是,这种多样性是如何在当地社区层面或社会政治地位结构的。为了解决这个问题,我们调查了帝国西部边境的贵族和地方精英公墓。分析来自18个人的基因组广泛数据,我们表明这些社区内的遗传多样性与整个帝国相当,并且在大家庭中也观察到了高度的多样性。遗传杂种在最低的地位个体中最高,这意味着多样的起源,而更高的地位个体则具有较少的遗传多样性,这表明精英状况和权力集中在更广泛的Xiongnu人群的特定子集中。
fi g u r e 2合成17项研究,报告组织样品与其他类型的样品(EDNA,散装,粪便或乙醇样品)之间的直接比较,用于研究种内多样性。(a)用组织样品鉴定的单倍型数量是用EDNA和其他类型的样品检测到的单倍型数量的函数。两个变量都是对数转换的。DOT表示在现场进行的比较,而三角形则用于在受控实验室环境中进行比较。虚线和虚线分别表示场(y = 1.247x -0.125)和实验室(y = 0.776 x + 0.836)研究的线性回归。灰线表示1:1相关性。(b)仅在其他类型的样品中仅在组织样品中鉴定出的单倍型的比例,或在目标研究中使用的两种样品类型中常见。
入侵啮齿动物是造成环境破坏和生物多样性丧失的主要原因,尤其是在岛屿上。与昆虫不同,包括具有偏向遗传的种群抑制基因驱动在内的遗传生物防治策略尚未在小鼠中开发出来。在这里,我们展示了一种基因驱动策略(t CRISPR),它利用t单倍型的超孟德尔传递来传播单倍型充足的雌性生育基因(Prl)中的失活突变。使用空间明确的基于个体的计算机模拟建模,我们表明t CRISPR可以在一系列现实的基于场的参数值下消灭岛屿种群。我们还设计了转基因t CRISPR小鼠,至关重要的是,它们表现出对修改后的t单倍型和Prl突变的偏向传播,而我们的模型预测这些水平足以消灭它们。这是一个可行的基因驱动系统的例子,用于控制入侵外来啮齿动物种群。
.................................................................................................................................................... 61 图 24 DLM 估计的时间序列中每个种群的估计趋势。 ... 62 图 25. 在夏季在参考点进行的浮潜调查中,每 5 公里成年夏季钢头鳟的年峰值数量。参考点位于奥林匹克国家公园的六条河流中,X 轴的标签报告了每年重复调查的次数 n。计数包括自然和孵化场来源的成年鳟鱼(见表 5)。详情请参阅 Brenkman 和 Connolly (2008)。 ............................................................................................................. 64 图 26. 在连续浮潜调查中计数的成年夏季钢头鳟的分布和相对丰度(见表 6)。成年钢头鳟的纵向剖面以 1 公里的空间尺度绘制,以箱长表示。 ........................................................................................... 68 图 27. 估计冬季径流种群的 15 年逃逸趋势(切断后总逃逸量)。点显示估计的随时间变化的趋势和个别种群的 95% 置信区间。15 年窗口的结束时间是 x 轴上的年份。仅显示至少有 2 个观测值(数据点)位于前 5 年且有 2 个观测值位于后 5 年的 15 年窗口。请注意,海峡 JF 组中的种群要小得多(图 22)。 ........................................................................................................................................... 70 图 28. 估计的 Busby(1977-1994 年)和后 Busby(1995-2022 年)时期的冬季径流种群的逃逸趋势(切断后总逃逸量)。点显示估计的趋势和 95% 置信区间。 ........................................................................................................................... 72 图 29. 冬季径流库存的 15 年平均逃逸量估算值(截断后的总逃逸量)。各点显示截至 x 轴年份的 15 年期间各个库存的估计平均值。仅显示至少有 2 年在前 5 年、2 年在后 5 年的 15 年窗口。x 轴上的年份是 15 年期的结束年份。 ........................................................................................................................... 74 图 30. 冬季径流库存的平均逃逸量估算值(3 月 15 日截断后的总逃逸量),前期(1989-1993 年)和后期(2018-2023 年)。请注意,y 轴为 log10 刻度。 ........................................................................................................................... 75 图 31.联合管理者报告的自然(3 月捕捞期后逃逸)冬季洄游鲑鱼的捕捞死亡率。这是捕捞量/捕捞量。娱乐性钓鱼(捕获和释放)死亡率仅包含在霍河数据中。...................................................................................... 78 图 32. 有捕捞和无捕捞期间 OP 鲑鱼海峡种群增长的一年估计值。估计值来自 DLM 输出。垂直线显示平均值和 95% 置信区间。............................................................................................................. 80 图 33. 有捕捞和无捕捞期间 OP 鲑鱼海峡种群的种群增长率。估计值来自 DLM 输出。垂直线显示平均值和 95% 置信区间。............................................................................................................. 81 图 34. 联合管理者报告的自然(3 月捕捞期后)冬季洄游鲑鱼逃逸和捕捞的原始数据。 ........................................................................................................... 83 图 35. 估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。 ............................................................................................................................................. 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(摘自 Moore 1960 年)。 ............................................................................................................................................. 88估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。...................................................................................................................................................... 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(来自 Moore 1960)。...................................................................................................................................................... 88估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。...................................................................................................................................................... 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(来自 Moore 1960)。...................................................................................................................................................... 88
分类条形图,包括在四个基因座:16SV4上确定的前10个最丰富的属(或最低分类); 18SV1V2; 18SV8V9和RBCL用于水(A)和生物膜(B)样品。湖泊分为五个区域,与中部地区和西部(M&W),东部(E),西南(SW)和东南(SE)相对应。调色板不代表各个地块或样本类型之间的分类组,而是将大多数(蓝色)到最少(红色)的分类单元安排。每个湖泊的分类小号在图S5中。信用:环境DNA(2025)。doi:10.1002/edn3.70058
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2024年3月21日发布。 https://doi.org/10.1101/2024.03.19.24304372 doi:medrxiv preprint
多花黄精是百合科黄精属多年生草本植物,具有重要的药用和营养价值。在我国,该物种是传统的药食同源植物,应用历史悠久,受到人们的广泛赞赏。然而,随着对药材需求的不断增长,过度采伐导致野生资源枯竭和遗传侵蚀的风险。加之品种混乱栽培和优质种质资源的缺乏,导致药材质量参差不齐。因此,迫切需要对该物种进行遗传多样性评估,制定完善的保护计划。本研究利用简单序列重复(SSR)分子标记技术,评估了从中国7个地区采集的96个样品的遗传多样性和种群结构。本研究利用10个多态性SSR标记共检测到60个等位基因(Na),平均每个位点产生6.0个等位基因,多态信息含量(PIC)值介于0.3396~0.8794之间,平均值为0.6430,有效等位基因数(Ne)平均值为2.761,Shannon信息指数(I)平均值为1.196。居群结构分析表明,在分子水平上可将多色黄精种质划分为3个亚居群(JZ、QY、JD),与之前根据植物个体表型性状划分的亚类相对应。分子变异分析(AMOVA)表明,74%的遗传变异发生在不同地区居群内的个体之间。对96个种质样品进行系统发育分析, 将其分为3个主要种群, 其中QY和JD亚种群聚集程度较大, 这可能与它们所处的山区分布及当地气候环境有关. 遗传分化系数(Fst)值较低, 为0.065, 表明种群分化程度较低. JZ种群与另外两个种群(QY和JD)的遗传分化系数(Fst)比值明显高于QY和JD种群之间的比值. 基于聚类分析