• 对于基因敲除,gRNA 通常靶向 5' 组成性表达的外显子,这降低了由于可变剪接而从 mRNA 中移除目标区域的可能性。 • 根据经验,避免靶向编码蛋白质 N' 末端附近氨基酸的位点,以减轻细胞使用注释起始密码子下游的替代 ATG 的能力。同样,避免靶向编码蛋白质 C' 末端附近氨基酸的位点,以最大限度地增加产生无功能等位基因的机会。对于 1 千碱基基因,由于潜在靶向位点每 8 个核苷酸中出现约 1 个,将 gRNA 限制在蛋白质编码区域的 5 – 65% 仍将导致有数十种 gRNA 可供选择。有这么多可能性,选择具有优化序列的 gRNA 是首要任务。 • 如果可能,设计 gRNA 以靶向编码已知必需蛋白质结构域的外显子。这种方法的好处是,即使非移码等位基因在重要的蛋白质结构域中出现时也可能改变蛋白质的功能。
摘要:先天性心脏病(CHD)是一种出生时即存在的畸形,由胎儿时期心脏及大血管发育异常引起。转化生长因子β活化蛋白激酶1(MAP3K7)结合蛋白2(TAB2)基因在胚胎时期心脏组织发育中起重要作用,当单倍体剂量不足时可导致CHD或心肌病。本研究报道了一例中国生长受限合并CHD患儿的病例研究。全外显子组测序结果提示TAB2发生了新的移码突变(c.1056delC/p.Ser353fsTer8),该患儿父母该位点为野生型,因此可能是从头突变。体外构建突变质粒,Western blotting结果显示该突变可能停止蛋白表达,提示该突变具有致病危害性。总之,本研究强调,无论家族中是否有 CHD 或心肌病病史,都应对不明原因身材矮小和 CHD 患者进行 TAB2 缺陷检查。本研究提供了有关突变谱的新数据,并为第二次怀孕和患者父母的遗传咨询提供了信息。
在“现成”新抗原中共享的移码突变的潜在使用疫苗1,2,尼古拉斯·麦克格拉纳汉(Nicholas McGranahan)1,2,* 1癌症基因组进化研究小组,伦敦大学癌症研究所,保罗·奥戈尔曼(Paul O'Gorman),保罗·奥戈尔曼(Paul O'Gorman)伦敦亨特利街72号WC1E 6BT,英国 *信件:nicholas.mcgranahan.10@ucl.ac.uk(N。McGranahan)。摘要:与因错义突变引起的新抗原相比,癌症患者之间从微卫星不稳定的肿瘤中衍生出的新抗原是在癌症患者之间更常见的。Roudko等人最近的一项研究。评估共享的移状新抗原的免疫原性,这些新抗原有可能用于“现成”新抗原疫苗。主文本免疫检查点抑制剂(CPI)在一系列癌症类型中彻底改变了癌症治疗。通过靶向可防止免疫系统攻击癌细胞的抗体,这些疗法可以防止肿瘤免疫逃避,从而使T细胞能够识别出肿瘤细胞被激活并最终促进主动免疫反应[1]。新抗原是癌症突变,会引起免疫系统识别为异物的肽(图1)。但是,只有一部分患者受益于这些疗法,从而引起对“现成”癌症疫苗的新兴趣。与靶向疗法相反,该疗法的重点是特定可行的改变(例如Roudko等人的研究。egfr激活突变)[2]在许多患者的肿瘤中共享,免疫疗法的成功很大程度上归因于“私有”推定的肿瘤新抗原的数量[3],这些肿瘤[3]主要特异性地特异性属于每个肿瘤。例如,对结直肠癌的错义突变的研究发现,所研究的每个肿瘤样本的特征都具有明显的突变特征,并且仅与其他肿瘤标本共享多达6个突变的癌症基因[4]。那么,在发展有针对性的新抗原疗法的主要挑战是缺乏共同的靶标。如果每个患者的新抗原曲目都是独一无二的,那么问题是“现成的”?Roudko及其同事[5]最近的一项研究探讨了由微卫星不稳定基因组区域引起的共同的新抗原,并评估了这些区域是否可以刺激免疫反应。微卫星不稳定性描述了重复的核苷酸序列,这些核苷酸序列由于复制误差而累积突变。由于不匹配修复功能的丧失,从微卫星不稳定性区域得出的移码突变可以保留在基因组中。专注于微卫星不稳定性高(MSI-H)胃,子宫内膜和结直肠癌,因为观察到的增加了
基因编辑工具,例如锌指、TALEN 和 CRISPR-Cas,为整个生命之树的植物遗传改良开辟了新领域。在真核生物中,基因组编辑主要通过两种 DNA 修复途径进行:非同源末端连接 (NHEJ) 和同源重组 (HR)。NHEJ 是高等植物的主要机制,但它不可预测,并且经常导致不良突变、移码插入和缺失。通过 HR 进行的同源定向修复 (HDR) 通常是遗传工程师首选的编辑方法。HR 介导的基因编辑可以通过整合供体模板提供的序列来实现无错误编辑。然而,植物中天然 HR 的频率低是实现高效植物基因组工程的障碍。本综述总结了为增加植物细胞中 HDR 频率而实施的各种策略。这些策略包括针对双链 DNA 断裂的方法、优化供体序列、改变植物 DNA 修复机制以及影响植物 HR 频率的环境因素。通过使用和进一步完善这些方法,基于 HR 的基因编辑可能有一天会在植物中变得很常见,就像在其他系统中一样。
摘要 CRISPR-Cas 系统无疑彻底改变了基因组编辑领域,能够以引导 RNA 特异性的方式进行靶向基因破坏、调控和恢复。在本综述中,我们重点介绍目前可用的使用 CRISPR 核酸酶的基因恢复策略,特别是用于治疗遗传疾病的策略。通过 DNA 修复机制的作用,CRISPR 介导的基因组靶标处的 DNA 切割可以移动阅读框以纠正异常的移码,而两个位点的 DNA 切割可以诱导大量缺失或倒位,从而纠正 DNA 的结构异常。需要供体 DNA 的同源性介导或同源性独立的基因恢复策略已经得到开发并广泛应用于精确纠正目标基因中的突变序列。与上面列出的 DNA 切割介导的基因校正方法相比,碱基编辑工具可以在没有供体 DNA 的情况下实现碱基转换。此外,人们已经利用 CRISPR 相关转座酶来产生靶向敲入,并且已经开发出用于编辑细胞中数十个核苷酸的引物编辑器。在这里,我们介绍目前开发的基因恢复策略,并讨论每种策略的优缺点。
摘要:芳烃受体相互作用蛋白样 1 (AIPL1) 在光感受器中表达,它促进磷酸二酯酶 6 (PDE6) 的组装,后者在光传导级联中水解 cGMP。AIPL1 的遗传变异会导致 4 型莱伯先天性黑蒙 (LCA4),表现为儿童早期视力迅速丧失。可用的体外 LCA4 模型有限,这些模型依赖于携带患者特异性 AIPL1 突变的患者来源细胞。虽然很有价值,但单个患者来源的 LCA4 模型的使用和可扩展性可能受到道德考虑、患者样本获取和高昂成本的限制。为了模拟患者独立的 AIPL1 突变的功能后果,实施了 CRISPR/Cas9 来产生携带 AIPL1 第一外显子移码突变的同源诱导多能干细胞系。使用这些细胞生成视网膜类器官,这些细胞保留了 AIPL1 基因转录,但无法检测到 AIPL1 蛋白。AIPL1 敲除导致视杆光感受器特异性 PDE6 α 和 β 减少,cGMP 水平升高,表明光传导级联下游失调。本文描述的视网膜模型提供了一个新平台,用于评估 AIPL1 沉默的功能后果,并通过针对突变独立发病机制的潜在治疗方法测量分子特征的挽救。
结果:在MMR基因中,在DHPLC基因变异筛选中鉴定了三个家族,该家族在MMR基因中具有致病性/可能的致病性种系变体。所有家庭在几代人的几个家庭成员中都有CRC的历史。肿瘤分析表明,与突变基因以及MSI相对应的MMR蛋白IHC染色的丢失。在MLH1中鉴定出a的a family A,一种结构变体,4至13的重复。预计重复将导致氨基酸520的框架和氨基酸539的过早终止密码子。在家庭B中,在MLH1中发现了1个碱基对缺失,从而在氨基酸491中产生移牌和终止密码子。在家庭C中,我们确定了MSH2中的一个剪接位点变体,该变体预计将导致剪接供体部位的损失。结论:我们在19个测序家族中的三个中,在MMR基因中完全确定了三种致病/可能的致病变异。基于洞察力和Clinvar数据库,MLH1变体是外显子4至13的复制和移码变体的新颖。 Clinvar的一个提交者报告了MSH2剪接网站变体。作为一种变体类别,在MMR基因文献中很少报道重复,尤其是涵盖多个外显子的文献。
药用蛋白质和工业酶的应用迅速扩大,需要强大的微生物主力来生产高蛋白。芽殖酵母酿酒酵母是一种有吸引力的细胞工厂,因为它能够进行真核翻译后修饰并分泌蛋白质。许多策略已被用于设计酵母平台菌株以提高蛋白质分泌能力。在此,我们研究了一组菌株,这些菌株之前已在紫外线随机诱变后被选择出来以提高 α-淀粉酶的分泌。在该菌株系中发现的总共 42 个氨基酸改变点突变被重新引入亲本菌株 AAC,以研究它们对蛋白质分泌的各自影响。这些点突变包括错义突变(氨基酸替换)、无义突变(终止密码子生成)和移码突变。为了进行比较,本研究还对相应的靶基因进行了单基因缺失。发现总共 11 个点突变和 7 个基因缺失可有效改善 α-淀粉酶的分泌。这些靶标涉及多种生物过程,包括细胞应激、蛋白质降解、运输、mRNA 加工和输出、DNA 复制和修复,这表明进化菌株中蛋白质分泌能力的提高是多种细胞内过程相互作用的结果。我们的研究结果将有助于构建重组蛋白质分泌的新型细胞工厂。
亨廷顿舞蹈症 (HD) 是一种目前无法治愈的致命神经退行性疾病,由亨廷顿 (HTT) 基因外显子 1 内的 CAG 三核苷酸重复扩增引起,从而产生一种突变蛋白,这种突变蛋白形成内含物并选择性破坏纹状体和其他相邻结构中的神经元。来自 CRISPR-Cas9 系统的 RNA 引导的 Cas9 内切酶是一种诱导 DNA 双链断裂的多功能技术,可刺激引入移码诱导突变并永久性地禁用突变基因功能。在这里,我们展示了来自金黄色葡萄球菌的 Cas9 核酸酶,一种小的 Cas9 直系同源物,可以与单个引导 RNA 一起包装到单个腺相关病毒 (AAV) 载体中,可用于在体内递送至纹状体后破坏 R6/2 小鼠 HD 模型中突变 HTT 基因的表达。具体来说,我们发现 CRISPR-Cas9 介导的突变 HTT 基因破坏导致神经元内含物减少 50%,并显著延长寿命和改善某些运动障碍。因此,这些结果说明了 CRISPR-Cas9 技术通过体内基因组编辑治疗亨廷顿氏病和其他由三核苷酸重复扩增引起的常染色体显性神经退行性疾病的潜力。
摘要:连接性大疱性表皮松解症 (JEB) 是一种严重的起泡性皮肤病,由编码皮肤完整性所必需的结构蛋白的基因突变引起。在本研究中,我们开发了一种适用于研究 JEB 相关 COL17A1 基因表达的细胞系,该基因编码 XVII 型胶原蛋白 (C17),C17 是一种跨膜蛋白,参与连接基底角质形成细胞和皮肤下层真皮。利用化脓性链球菌的 CRISPR/Cas9 系统,我们将 GFP 的编码序列与 COL17A1 融合,导致 GFP-C17 融合蛋白在人类野生型和 JEB 角质形成细胞中在内源性启动子的控制下组成性表达。我们通过荧光显微镜和蛋白质印迹分析证实了 GFP-C17 的准确全长表达和定位到质膜。正如预期的那样,GFP-C17 mut 融合蛋白在 JEB 角质形成细胞中的表达未产生特定的 GFP 信号。然而,在表达 GFP-COL17A1 mut 的 JEB 细胞中,CRISPR/Cas9 介导的 JEB 相关移码突变修复导致 GFP-C17 恢复,这在融合蛋白的全长表达、其在角质形成细胞单层质膜内以及 3D 皮肤等效物的基底膜区内的准确定位中显而易见。因此,这种基于荧光的 JEB 细胞系有可能作为筛选个性化基因编辑分子和体外应用以及在适当的动物模型中体内应用的平台。