摘要 - 本文提出了具有控制和外源输入的非线性动力学(SINDY)的稀疏识别,以高度准确,可靠的预测,并将所提出的方法应用于柴油发动机Airpath系统,这些方法被称为非线性复杂工业系统。尽管Sindy被称为识别非线性系统的强大方法,但仍然存在一些问题:由于嘈杂的数据和由于时间段嵌入等协调的扩展而导致的基础功能增加,因此无法保证在工业系统中应用和多步预测的示例。为了解决这些问题,我们提出了基于整体学习,精英收集和分类技术的改进的信明,同时保持凸计算。在拟议的方法中,进行了图书馆的行李,并且收集了R平方的精英大于90%。然后,在幸存的精英上执行聚类,因为并非总是可用的,并且获得的精英模型并不总是显示出相同的趋势。分类后,通过取出每个分类精英的平均值获得离散模型候选者。最后,选择了最佳模型。仿真结果表明,所提出的方法实现了气相系统的多步骤预测,该系统在嘈杂条件下被称为复杂的工业系统。
链接预测是图数据中的一个基本问题。在其最现实的环境中,问题包括预测一组断开对的节点对之间的丢失或将来的联系。图形神经网络(GNN)已成为链接预测的主要框架。基于GNN的方法将链接预测视为二进制分类问题,并处理极端类不平衡 - 真实图非常稀疏 - 通过对(随机均匀)进行抽样(随机均匀),不仅是用于培训,而且用于评估的脱节对。但是,我们表明,在平衡设置中链接预测的GNN的报告并不能转化为更现实的不平衡设置,并且在han-dling稀疏性方面,基于更简单的基于拓扑的方法通常会更好。这些发现激发了基于相似性的链接预测方法,该方法采用(1)基于节点属性的图形学习来增强拓扑启发式启发式,(2)解决类不平衡的排名损失,以及(3)负面采样方案,通过图分划分有效地选择硬训练对。实验表明,冰淇淋的表现优于现有的基于GNN的替代方案。
生成可设计的蛋白质骨架已成为机器学习辅助方法的组成部分。与序列设计和结构预测器的过滤一起,它形成了计算蛋白设计管道的骨干。然而,当前的蛋白质结构发生器面临着大蛋白的重要局限性,需要在模型训练期间看不见的蛋白质设计任务进行再培训。为了解决第一个问题,我们介绍了Salad,这是一个蛋白质骨架产生的S-Al l- A tom a tom denoising模型。我们的模型在匹配或提高可设计性和多样性的同时,我们的模型要比最先进的速度要快,并为高达1,000个氨基酸的蛋白质长度生成可设计的结构。为了解决第二个问题,我们将沙拉与结构编辑相结合,这是扩展蛋白质denoising模型无法看见任务的能力的策略。我们将方法应用于各种蛋白质设计任务,从基序旧到多态蛋白质设计,证明了沙拉和结构编辑的功能。
∙第一作者:Minkyoung Kim,通讯作者:Minkyoung Kim *Minkyoung Kim(kmk0224@hanwha.com),Infra Technology R&D Systems,Hanwha Systems∙收到:2023。11。23,修订:2023。12。28,接受:2023。12。28。
目的:开发和评估一种适用于定量高分辨率全脑动态增强磁共振成像 (DCE-MRI) 的有效对比前 T 1 映射技术。方法:考虑可变翻转角 (VFA) T 1 映射,提供 1 × 1 × 2 mm 3 分辨率,以匹配最近的高分辨率全脑 DCE-MRI 协议。七个 FA 以对数间隔排列,范围从 1.5° 到 15°。使用基于模型的重建估计 T 1 和 M 0 图。使用具有噪声模拟 3T 神经成像的解剖学逼真的脑肿瘤数字参考对象 (DRO) 和从一名健康志愿者获取的完全采样数据来评估该方法。该方法还将方法应用于来自 13 名高级别胶质瘤患者的四倍前瞻性欠采样 VFA 数据。结果:T 1 映射精度随欠采样因子 R 的增加而降低,但在临界 R 之前偏差仍然很小。在无噪声 DRO 中,白质 (WM) 中的 T 1 偏差 <25 毫秒,脑肿瘤 (BT) 中的 T 1 偏差 <11 毫秒。WM 中的 T 1 标准差 (SD) <119.5 毫秒(变异系数 [COV] ~11.0%),BT 中的 T 1 标准差 <253.2 毫秒(COV ~12.7%)。在有噪声的 DRO 中,WM 中的 T 1 偏差 <50 毫秒,BT 中的 T 1 标准差 <30 毫秒。对于 R ≤ 10,WM 中的 T 1 SD <107.1 毫秒(COV ~9.9%),BT 中的 T 1 SD <240.9 毫秒(COV ~12.1%)。在健康受试者中,R ≤ 16 时 T 1 偏差 <30 毫秒。当 R = 4 时,T 1 SD 为 171.4 毫秒(COV ~13.0%)。在前瞻性脑肿瘤研究中,T 1 值与 WM 和 BT 中的文献值一致。结论:高分辨率全脑 VFA T 1 映射在稀疏采样下是可行的,支持将其用于定量 DCE-MRI。
基于大脑计算机界面(BCI)系统的情绪分类是一个吸引人的研究主题。最近,已经对BCI系统的情绪分类进行了深入学习,并与传统的分类方法进行了比较。在本文中,提出了一种新型的深层神经网络,用于使用脑电图系统进行情绪分类,该系统结合了卷积神经网络(CNN),稀疏自动编码器(SAE)和深神经网络(DNN)。在拟议的网络中,CNN提取的功能首先发送到SAE进行编码和解码。然后将冗余降低的数据用作分类任务的DNN的输入特征。使用DEAP和种子的公共数据集用于测试。实验结果表明,所提出的网络比情绪识别的常规CNN方法更有效。对于DEAP数据集,价值和唤醒的最高识别精度分别达到了89.49%和92.86%。但是,对于种子数据集,最佳识别精度达到96.77%。通过组合CNN,SAE和DNN并分别训练它们,提出的网络被显示为具有比常规CNN更快的收敛速度的有效方法。
深度神经网络在持续学习中会遭受灾难性遗忘,在优化新任务时,它们往往会丢失有关先前学习过的任务的信息。最近的策略是隔离先前任务的重要参数,以便在学习新任务时保留旧知识。然而,使用固定的旧知识可能会成为获取新表示的障碍。为了克服这个限制,我们提出了一个框架,通过吸收新任务的知识来演化先前分配的参数。该方法在两个不同的网络下执行。基础网络学习顺序任务的知识,而稀疏诱导超网络为每个时间步骤生成参数以演化旧知识。生成的参数将基础网络的旧参数转换为反映新知识。我们设计超网络以根据任务特定信息和基础网络的结构信息生成稀疏参数。我们在图像分类和视频动作识别任务的类增量和任务增量学习场景中评估了所提出的方法。实验结果表明,通过发展旧知识,所提出的方法在这些场景中始终优于各种各样的持续学习方法。
行业4.0应用程序涉及更多数量的传感器或物联网(IoT)设备来支持行业自动化。它涉及更多的计算来分析从处理单元的几个关键部分收集的传感器数据。稀疏信号处理是在通信和信号处理领域中具有许多应用的。本文介绍了一种新的方法,可以借助水平交叉采样(LCS)和基于回溯的基于回溯的迭代硬阈值(BIHT)算法进行重建。该过程涉及,信息信号使用发射机侧的不均匀采样将信息信号转换为随机稀疏信号,然后可以使用接收器侧的BIHT算法将其重建。模拟结果表现出所提出的BIHT重建的出色性能。
我们的方法论具有多种优势作为替代增长指标。首先,我们的IDI CATOR借鉴了大量的高频数据,这可能与中国的经济表现有关。我们的方法论然后淘汰了有关潜在经济增长的信息的较少信息。接下来,我们将基础数据定位为一组与中国经济各个重要方面高度相关的经济指标。最终结果是稀疏的部分最小二乘(PLS)回归的因素,似乎可以在高频中跟踪中国业务周期,表现良好,如Clark,Dawson和Pinkovskiy(2019)所示,与世界各地的一系列增长指标相关联。最后,我们的因素模型使我们能够将中国从趋势增长到全球增长,信贷供应和货币政策组成部分的偏差分解。