摘要 - 在具有挑战性的环境中需要可靠的定位,需要现代机器人系统才能运行。基于激光雷达的局部化方法,例如迭代最接近的点(ICP)算法,可能会在几何无知的环境中遭受损害,这些环境已知,这些环境已知会导致点云登记性能恶化,并沿弱受约束方向推动散落的优化。为了克服这个问题,这项工作提出了i)稳健的可局部性检测模块,ii)局限性感知到的受限的ICP优化模块,该模块将其与统一的局限性检测模块相结合。通过利用扫描和地图之间的对应关系来实现所提出的可区分性检测,以分析优化的主要方向的对齐强度,作为其细粒度的LIDAR固定性分析的一部分。在第二部分中,然后将此可本质性分析集成到扫描到映射点云注册中,以通过执行受控更新或离开优化的脱位方向来生成无漂移姿势更新。所提出的方法经过彻底评估并将其与模拟和现实世界实验1中的最新方法进行了比较,证明了激光挑战环境的性能和可靠性提高。在所有实验中,所提出的框架表明没有环境特异性参数调整的准确且可推广的可局部性检测和可靠的姿势估计。
H ∞ 滤波器针对的是噪声过程统计数据不确定的情况,此时我们的目标是最小化最坏情况而不是估计误差的方差 [ 3 , 26 ]。该滤波器限制了将扰动映射到估计误差的传递函数的 H ∞ 范数。然而,在瞬态操作中,会失去所需的 H ∞ 性能,并且滤波器可能会发散,除非每次迭代中都有一些(通常是限制性的)正性条件成立。在集值估计中,扰动向量通过有界集(如椭球)建模 [ 4 , 22 ]。在该框架中,我们试图围绕与观测值和外生扰动椭球一致的状态估计构建最小椭球。然而,由此产生的稳健滤波器会忽略任何分布信息,因此倾向于过于保守。 [19] 首次研究了一种对更一般形式的(基于集合的)模型不确定性具有鲁棒性的滤波器。该滤波器以迭代方式最小化标准状态空间模型附近所有模型的最坏情况均方误差。虽然该滤波器在面对较大不确定性时表现良好,但在较小不确定性下可能过于保守。[25] 提出了一种广义卡尔曼滤波器,它可以解决这个缺点,在标准性能和最坏情况性能之间取得平衡。通过最小化矩生成函数而不是估计误差平方的均值,可以得到风险敏感的卡尔曼滤波器 [24]。这种风险敏感的卡尔曼滤波器等同于 [12] 中提出的分布鲁棒滤波器,它最小化标准分布周围的 Kullback-Leibler (KL) 球中所有联合状态-输出分布的最坏情况均方误差。 [27] 研究了更一般的 τ -散度球的扩展。
巴黎萨克雷大学博士论文,在巴黎萨克雷高等师范学院编写,博士学校 n°579 机械和能源科学、材料和地球科学 (SMEMAG) 博士专业:机械工程论文在卡尚 (Cachan) 提交和答辩, 2019 年 12 月 5 日,作者:Yassir AREZKI 评审团组成:Jean-François Fontaine勃艮第大学教授 报告员 Denis Teissandier 波尔多大学教授 报告员 Jean-Marc Linarès 艾克斯马赛大学教授 考官 Fengzhou Fang 都柏林大学和天津大学教授 考官 Olivier Bruneau 巴黎南大学教授 考官 Nabil Anwer 巴黎大学教授-南方论文主任 Hichem Nouira 研究员(HDR 博士),LNE/Cnam 联合论文主任 Charyar Mehdi-Souzani MCF,巴黎大学 13 论文联合导师 Muriel Thomasset 研究员,同步加速器 SOLEIL 客座
将几何模型拟合到离群污染数据上是可证明的难点。许多计算机视觉系统依靠随机抽样启发式方法来解决稳健拟合问题,但这种方法不提供最优性保证和误差界限。因此,开发新方法来弥合成本高昂的精确解决方案与无法提供质量保证的快速启发式方法之间的差距至关重要。在本文中,我们提出了一种用于稳健拟合的混合量子经典算法。我们的核心贡献是一种新颖的稳健拟合公式,它可以解决一系列整数程序并以全局解或误差界限终止。组合子问题适合量子退火器,这有助于有效地收紧界限。虽然我们对量子计算的使用并没有克服稳健拟合的根本难点,但通过提供误差界限,我们的算法是对随机启发式算法的实际改进。此外,我们的工作代表了量子计算在计算机视觉中的具体应用。我们展示了使用实际量子计算机(D-Wave Advantage)和通过模拟 1 获得的结果。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要。引入了一种用于建模肿瘤生长的新计算工具肿瘤生长。该工具允许比较标准教科书模型,例如一般的Bertalan效和Gom-Pertz,以及一些较新的模型,包括第一次是神经ODE模型。作为一种应用,我们在接受两种不同治疗方案的患者中重新审视非小细胞肺癌和膀胱癌病变的人类元研究,以确定先前报道的性能差异在统计学上是否显着,并且是否更新,更复杂的模型更为复杂。在至少四个时间体积测量的示例中,可以进行校准,平均约为6.3,我们的主要结论是,普通的bertalan杀性模型平均具有较高的性能。但是,如果有更多测量值可用,我们认为能够捕获反弹和复发行为的更复杂的模型可能是更好的选择。
摘要 — 通过表面肌电 (sEMG) 信号对手部运动进行分类是一种成熟的高级人机交互方法。然而,sEMG 运动识别必须处理基于 sEMG 控制的长期可靠性,这受到影响 sEMG 信号的可变性的限制。嵌入式解决方案会受到识别准确度随时间下降的影响,这使得它们不适合可靠的手势控制器设计。在本文中,我们提出了一种基于时间卷积网络 (TCN) 的完整的可穿戴级嵌入式系统,用于基于 sEMG 的稳健手势识别。首先,我们开发了一种新颖的 TCN 拓扑 (TEMPONet),并在基准数据集 (Ninapro) 上测试了我们的解决方案,实现了 49.6% 的平均准确率,比目前最先进的 (SoA) 好 7.8%。此外,我们设计了一个基于 GAP8(一种新型 8 核物联网处理器)的节能嵌入式平台。使用我们的嵌入式平台,我们收集了第二个 20 个会话数据集,以在代表最终部署的设置上验证系统。我们使用 TCN 获得了 93.7% 的平均准确率,与 SoA SVM 方法(91.1%)相当。最后,我们使用 8 位量化策略来适应处理器的内存限制,对在 GAP8 上实现的网络的性能进行了分析。我们达到了 4 倍更低的内存占用(460 kB),性能下降仅为 3% 的准确率。我们详细介绍了在 GAP8 平台上的执行情况,结果显示量化网络在 12.84 毫秒内执行单个分类,功率包络为 0.9 mJ,使其适合长寿命可穿戴设备部署。
1 CNRM,de toulouseUniversitéde toulouse,Météo -France,CNRS,Toulouse,法国,2 Laboratoire Alterato Milieux Milieux观察时代人/Institut Pierre Simon Laplace(IPSL) (DWD),德国奥登巴赫,4大气与气候科学研究所,苏黎世,苏黎世,瑞士,瑞士5 Wyss自然学院,伯恩大学,伯恩大学,瑞士6气候与环境物理,物理学,物理学,物理学研究所,伯恩,伯恩,伯恩,伯恩,伯尔尼,贝尔特,贝尔特,贝尔特,贝尔特,贝尔尼挪威奥斯陆气象学院,9卡尔斯鲁希技术研究所(KIT),德国卡尔斯鲁希,德国10个气候服务中心(Gerics),Helmholtz -Zentrum thermholtrum thermhore gmbh,德国汉堡,德国,11个研究所,乔格尔(Josci),乔格(Ibgg -3)德国,英国埃克塞特市大都会办公室12号办公室,德国勃兰登堡技术大学大气进程主席13,德国科特布斯,德国科特布斯,荷兰皇家气象研究所(KNMI)14号,荷兰,荷兰15 Fondazione Centro -Meditertro -Mediterraneo suiiii camcaty climcicali climccy climccy climccy climccy, Abdus Salam国际理论物理中心(ICTP),意大利Trieste,17 Faculdade deCiências,Instituto dom Luiz Instituto dom Luiz,Lisboa大学,里斯本,里斯本,葡萄牙,CESR 18 CESR(环境系统研究中心)