摘要 — 在过去的几十年里,太空已经从一场纯粹的科学斗争(由展示一个政权优于另一个政权的愿望所推动)发展成为几乎所有发达国家经济的支点。许多企业都严重依赖卫星通信或数据采集,不仅用于国防目的,而且也越来越多地用于日常应用。然而,尽管到目前为止,航天国家都没有将地球冲突延伸到太空,但这一关键基础设施并不像常识所认为的那样坚不可摧。在本文中,我们分析了航天器面临的威胁以及必须做出哪些改变才能减轻这些威胁。特别是,我们将关注网络威胁,这些威胁很可能是由小国和恐怖组织发起的,它们的动机不一定包括太空领域的可持续性,也可能不会受到地面相互报复的威胁。我们调查事件,突出威胁,并提高人们对意外故障的一般准备(这在航天界已经广泛传播)的认识,以及对意外和恶意故障(例如网络恐怖分子和国家黑客的针对性攻击)的准备和容忍度。索引术语 — 空间、卫星、网络物理、系统、威胁载体、网络安全、网络安全
目前,Terma 正在为众多当前和未来的任务提供软件和硬件系统。 例如: • BepiColombo——2018 年发射至水星,采用我们的电力电子设备,使用我们的检验软件进行测试,并使用我们的卫星控制系统软件进行控制; • Euclid(预计 2020 年发射)——采用我们的电力电子设备,并使用我们的检验和模拟软件进行测试; • Aeolus——2018 年发射,搭载我们的星跟踪器; • Electra——正在使用我们的 RTU 进行开发; • Heinrich Hertz——正在使用我们的 RTU 进行开发; • SARah——正在开发中,采用我们的电力电子设备、RTU 硬件、测试和模拟软件,并使用我们的卫星控制软件进行操作; • OptSat——正在开发中,采用我们的电力电子设备、RTU 硬件、测试和模拟软件,并使用我们的卫星控制软件进行控制; • OneWeb——正在使用我们的检验软件进行测试。
ARINICHEVA, Olga V. 1 LEBEDEVA, Natalia A. 2 MALISHEVSKII, Aleksei V. 3 摘要 本文包含基于模糊集合论的人的社会学特征的数学模型。所提出模型的实际应用侧重于评估必须以强制速度处理大量信息流的操作员(例如飞机飞行员或空中交通管制员)的专业能力。关键词:类型学、信息代谢、社会学、模糊集、社会学模型 摘要 本文包含基于模糊集理论的人的社会学特征的数学模型。所提出模型的实际应用侧重于评估必须以强制速度处理大量信息流的操作员(例如飞机飞行员或空中交通管制员)的专业能力。关键词:类型学、信息代谢、社会学、模糊集、社会学模型。
摘要 - 新空间时代通过由公共空间代理商和私人公司领导的新空间任务增加了太空中的交流trafϔic。火星殖民化也是船员任务在不久的将来的目标。由于地球和火星附近的空间越来越多,带宽变得拥挤。此外,目前任务的下行链路性能在延迟和数据速率方面并不令人满意。因此,为了满足太空链接的不断增长的需求,在本研究中提出了Terahertz频段(0.1-10 THZ)无线通信。与此相一致,我们讨论了THZ带空间链接姿势和可能的解决方案的主要挑战。此外,我们为火星大气层的情况模拟了火星空间THZ链接,并进行了严重的沙尘暴,以表明即使在最坏的条件下,也可以使用大型带宽用于火星交流。
- 机载数据处理用于早期预警情况, - 观测和气象卫星,机载处理允许仅将相关和预处理的数据发送到地面,从而减少下行带宽要求, - 人工智能可以提高航天器在对接或着陆等关键操作中的自动引导性能, - 机载决策由于早期反应可以更好地防止碰撞,并提供自我健康监测和最终自主重构的可能性, - 通信卫星可以从智能数据路由和基于实际交通和天气条件的优化天线指向中受益,以提高数据速率并最大限度地降低功耗, - 融合来自各种传感器的数据源,可以看到“人眼”看不见的东西,包括深空和科学任务中对大型数据集的机载分析。
a 德国图宾根埃伯哈德-卡尔斯大学理论物理研究所,72076 图宾根,德国 b 英国贝尔法斯特女王大学数学与物理学院原子、分子和光学物理理论中心,BT7 1NN,英国 c 意大利的里雅斯特大学物理系,Strada Costiera 11,34151 的里雅斯特,意大利 d 意大利国立核物理研究所,里雅斯特分院,Via Valerio 2,34127 的里雅斯特,意大利 e 马克斯普朗克光科学研究所,Staudtstraße 2,91058 埃尔朗根,德国 f 弗里德里希-亚历山大埃尔朗根-纽伦堡大学光学、信息和光子学研究所,Staudtstraße 7 B2,91058埃尔朗根,德国 g 意大利空间研究机构,马泰拉,意大利 h 帕拉茨基大学光学系,17. listopadu 50,772 07 奥洛穆茨,捷克共和国 i 物理学理论:现象信息量化,巴塞罗那自治大学物理学系,08193 贝拉特拉(巴塞罗那),西班牙 j 南安普顿大学物理与天文系,Highfield 校区,SO17 1BJ,英国 k 德国空气与空间飞行中心 e。 V. (DLR), 卫星测量和惯性传感器研究所 (SI), Vorlaufige Anschrift: DLR-SI, c/o Leibniz Universitàat Hannover, Callinstraße 36, 30167 Hannover l Institut fěur Quantenoptik, Leibniz Universitàat Hannover, Am Welfengarten 1, 30167 德国汉诺威 m 伦敦大学学院物理与天文学系,WC1E 6BT,英国 n SUPA 斯特拉斯克莱德大学物理系,英国格拉斯哥 o 空中客车防务与航天有限公司,Robert-Koch-Straße 1, 82024 Taufkirchen p 卢布尔雅那大学数学与物理学院,Jadranska ulica 19, 1000卢布尔雅那,斯洛文尼亚 q 量子光学和量子信息研究所,维也纳,奥地利 r ZARM,不来梅大学,Am Fallturm 2, 28359 Bremen,德国 s Deutsches Zentrum fùur Luft- und Raumfahrt e。 V. (DLR), 量子技术研究所 (QT), Söflinger Strasse 100, 89077 Ulm, 德国 t 马耳他大学物理系, Msida MSD 2080, Malta
我们正处于行业发展的最佳时期,可以打造未来 10 年的太空电子。市场报告显示,未来十年可能会发射多达 20,000 颗卫星。连接性和带宽需求不断增加;设计灵活性和性价比是几乎所有系统设计人员最关心的问题。COTS 太空电子将通过提供包括经济实惠、风险缓解解决方案等不同元素来推动太空繁荣。“太空中的 COTS” 并不是一个新概念。新的是能够将 COTS 电子设备更好地集成到整个航天工业正在开发的更高密度、更紧凑、基于网络的卫星集群中。本白皮书不仅探讨了对太空电子中更高计算性能和更紧密系统集成的追求如何为系统工程师带来新一轮的设计挑战,还探讨了 COTS 电子设备的使用如何应对这些挑战。还展示了在设计周期开始时应解决的特定设计优先事项,以帮助降低风险并确保可靠的系统运行,以及针对近地轨道 (NEO) 和低地轨道 (LEO) 应用(如小型卫星和短时太空飞行)中 COTS 组件的新 300 系列验证级别。从私人资助组织到政府实体,卫星和有效载荷制造商面临的一个日益严峻的挑战是满足积极的开发到部署时间表。此外,两个大的行业趋势是公司购买更高级别的组装件(子系统,而不是单元或电路板)以及多个卫星子系统的数字化程度不断提高。与大多数行业一样,需要更快的处理、更多的 I/O、更多的集成、更快的交付、更高的容量等。但系统还必须经受住太空和辐射效应的严酷考验,并满足更高数据吞吐量的处理要求。构建太空电子设备的核心是降低风险。每个任务都是独一无二的,这些风险根据所需的可靠性水平、任务持续时间、轨道位置和倾角、轨道类型、载人还是无人等而有所不同。环境因素——温度波动、冲击和振动、辐射暴露——也都会影响风险因素。本文详细介绍了如何广泛使用具有成本效益的 COTS 硬件,使卫星提供商能够使用经过验证的可靠嵌入式设计来满足紧迫的时间表。
1 卢布尔雅那大学数学与物理学院,卢布尔雅那,斯洛文尼亚 2 量子光学与量子信息研究所,维也纳,奥地利 3 ICFO-Institut de Ciencies Fotoniques,巴塞罗那科学技术学院,卡特尔德费尔斯(巴塞罗那),西班牙 4 ICREA-Institucio Catalana de Recerca i Estudis Avan¸cats,巴塞罗那,西班牙 5 布达佩斯技术与经济大学网络系统与服务系,布达佩斯,匈牙利 6 空中客车防务与航天有限公司,朴茨茅斯,英国 7 LP2N,光、数值与纳米科学实验室,波尔多大学-IOGS-CNRS:UMR5298,塔朗斯,法国 8 LIP6,索邦大学,CNRS,法国巴黎 9 马克斯普朗克光科学研究所,埃尔朗根,德国10 葡萄牙里斯本大学高级技术学院 11 葡萄牙里斯本电信学院 12 葡萄牙 Y Quantum – Why Quantum Technologies Ltd. 13 德国汉诺威莱布尼茨大学量子光学研究所 14 德国韦斯林 OHB System AG 15 德国陶夫基兴空中客车防务与航天有限公司 16 英国南安普顿大学物理与天文系 17 意大利帕多瓦大学信息与工程系 18 意大利帕多瓦大学帕多瓦量子技术研究中心 19 法国图卢兹泰雷兹阿莱尼亚宇航公司 20 希腊伊拉克利翁研究与技术基金会电子结构与激光研究所 21 瑞士日内瓦大学 22贝尔法斯特女王大学,贝尔法斯特,英国 ∗
1 卢布尔雅那大学数学与物理学院,卢布尔雅那,斯洛文尼亚 2 量子光学与量子信息研究所,维也纳,奥地利 3 ICFO-Institut de Ciencies Fotoniques,巴塞罗那科学技术学院,卡特尔德费尔斯(巴塞罗那),西班牙 4 ICREA-Institucio Catalana de Recerca i Estudis Avan¸cats,巴塞罗那,西班牙 5 布达佩斯技术与经济大学网络系统与服务系,布达佩斯,匈牙利 6 空中客车防务与航天有限公司,朴茨茅斯,英国 7 LP2N,光、数值与纳米科学实验室,波尔多大学-IOGS-CNRS:UMR5298,塔朗斯,法国 8 LIP6,索邦大学,CNRS,法国巴黎 9 马克斯普朗克光科学研究所,埃尔朗根,德国10 葡萄牙里斯本大学高级技术学院 11 葡萄牙里斯本电信学院 12 葡萄牙 Y Quantum – Why Quantum Technologies Ltd. 13 德国汉诺威莱布尼茨大学量子光学研究所 14 德国韦斯林 OHB System AG 15 德国陶夫基兴空中客车防务与航天有限公司 16 英国南安普顿大学物理与天文系 17 意大利帕多瓦大学信息与工程系 18 意大利帕多瓦大学帕多瓦量子技术研究中心 19 法国图卢兹泰雷兹阿莱尼亚宇航公司 20 希腊伊拉克利翁研究与技术基金会电子结构与激光研究所 21 瑞士日内瓦大学 22贝尔法斯特女王大学,贝尔法斯特,英国 ∗
摘要 最近,在许多欧洲国家的支持下,欧盟委员会宣布对量子技术 (QT) 商业化进行大规模投资,以解决和缓解当今数字时代面临的一些最大挑战 - 例如安全通信和计算能力。二十多年来,QT 社区一直致力于 QT 的开发,这些 QT 有望取得里程碑式的突破,从而在各个领域实现商业化。QT 社区的雄心勃勃的目标和欧盟当局的期望无法仅靠单个国家的单独举措来满足,因此需要欧洲共同努力,其规模之大和史无前例,仅可与伽利略或哥白尼计划相媲美。激烈的国际竞争要求欧洲协调一致,努力发展太空中的 QT,包括通信和传感领域的技术研发。在这里,我们旨在总结对太空应用领域产生影响的量子技术发展的最新成果。我们的目标是概述一个完整的太空量子技术设计、开发、实施和利用框架。