2差异几何形状的评论5 2.1歧管,光滑的地图和切线空间。。。。。。。。。。。。5 2.2张量代数(一个点的张量)。。。。。。。。。。。。。。。。。9 2.3张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.4 Lorentzian度量和Lorentzian歧管。。。。。。。。。12 2.4.1简短的Intermezzo:Lorentz内部产品。。。。。。。。12 2.4.2 Minkowski空间。。。。。。。。。。。。。。。。。。。。。。。15 2.4.3索引升高和降低。。。。。。。。。。。。。。。。。16 2.4.4更多术语。。。。。。。。。。。。。。。。。。。16 2.4.5曲线的长度。。。。。。。。。。。。。。。。。。。。。16 2.4.6时间方向。。。。。。。。。。。。。。。。。。。。。。。17 2.4.7洛伦兹指标的存在。。。。。。。。。。。。。。。18 2.5矢量场和流。。。。。。。。。。。。。。。。。。。。。。。。19 2.6连接。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.7平行运输和测量学。。。。。。。。。。。。。。。。。。24 24 2.8扭转张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.9 Riemann曲率张量。。。。。。。。。。。。。。。。。。。。。。25 2.10 Levi-Civita连接。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 2.11绑带调整器的对称性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 2.12 ricci张量。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.13爱因斯坦方程。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 2.14异分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。28 2.15指数地图和正常社区。。。。。。。。31 2.16正常坐标。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.17本地洛伦兹几何形状。。。。。。。。。。。。。。。。。。。。。。。33
f纳克技术大学,丹麦技术大学物理系,丹麦2820 G材料学院,太阳YAT-SEN大学,广州510275,H中国H中心微型/纳米电子中心(Novitas),电气和电子工程学院,电气和电子工程学院,Nanyang技术大学CNRS/NTU/THALES,UMI 3288,研究技术广场,637553,新加坡†相同的贡献 *相应的作者。Karen Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sgKaren Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sg
氧空位在塑造金属氧化物的特性中起着至关重要的作用,例如催化,铁电性,磁性和超导性。尽管X射线光电子光谱(XPS)是一种健壮的工具,但准确的氧气空位定量仍然是一个挑战。XPS分析中的一个常见错误是将O 1 S光谱中的531 - 532 eV特征与氧空位相关联。这是不正确的,因为空的氧气位点不会发出光电子,因此不会产生直接的XPS光谱特征。为了解决这个问题,我们提出了三种通过间接特征通过XPS进行氧气空位分析的替代方法:(1)量化阳离子价状态变化,(2)通过归一化的氧气光谱强度和(3)评估FERMI能量从粘合En-Ergy中的电量移位来评估Fermi Ensightic Engy的Fermi Ensive变化。推荐的策略将促进氧气空位的精确XPS分析,从而促进未来的理解和操纵氧空位以进行先进材料开发的研究。
摘要:ZnO由于其高灵敏度和快速响应而对化学传感器进行了深入研究。在这里,我们提出了一种简单的方法,可以精确控制氧气空位含量,以提供商业ZnO纳米植物的丙酮感应性能的显着增强。H 2 O 2处理和热退火的组合可在ZnO纳米颗粒(NPS)上产生最佳的表面缺陷。在400的最佳工作温度下,在0.125 m H 2 O 2中,在0.125 m H 2 O 2中获得了〜27,562的最高响应,在400的最佳工作温度下,基于金属氧化物半管子(MOSS)的各种丙酮传感器中,在各种丙酮传感器中,该ZnO NP的最高响应。此外,第一原理的计算表明,在H 2 O 2处理的ZnO NP的表面上形成的预称o可以提供有利的吸附能,尤其是对于丙酮检测,由于丙酮分子和Zno表面的丙酮和预测o之间的carbonyl C原子之间的强烈双态粘结。我们的研究表明,通过H 2 O 2处理控制表面氧空位并在最佳温度下重新拨动是一种有效的方法,可以提高商业MOS材料的感应特性。关键字:气体传感器;丙酮;金属氧化物半导体(MOSS); ZnO纳米颗粒(NPS); H 2 O 2
摘要:激光三维打印已成为基于熔体生长制备高性能Al 2 O 3 基共晶陶瓷的重要技术,但氧空位是该过程中不可避免的晶体缺陷,其形成机理和在沉积态陶瓷中的作用尚不清楚。本文采用激光3D打印制备Al 2 O 3 /GdAlO 3 /ZrO 2 三元共晶陶瓷,通过精心设计的退火实验揭示了氧空位的形成机理,并研究了氧空位对凝固态共晶陶瓷结构和力学性能的影响。揭示了氧空位的形成是由于氧原子通过空位迁移机制从氧化物陶瓷中转移到缺氧气氛中,此外,氧空位的存在对增材制造共晶陶瓷的晶体结构和微观结构没有明显影响。然而这些晶体缺陷的形成会在一定程度上改变陶瓷材料的化学键性质,从而影响沉积态共晶陶瓷的力学性能。研究发现,去除氧空位后,陶瓷材料的硬度降低了3.9%,断裂韧性提高了13.3%。该结果可为调控氧化物陶瓷材料的力学性能提供一种潜在的策略。关键词:氧化物共晶陶瓷;激光3D打印;氧空位;微观结构;力学性能
摘要:碳化硅最近被开发为光学可寻址自旋缺陷的平台。特别是,4H 多型体中的中性双空位显示出光学可寻址的自旋 1 基态和近红外光发射。在这里,我们展示了耦合到光子晶体腔的单个中性双空位的 Purcell 增强。我们利用纳米光刻技术和掺杂剂选择性光电化学蚀刻的组合来产生质量因子超过 5000 的悬浮腔。随后与单个双空位的耦合导致 Purcell 因子约为 50,表现为零声子线的光致发光增加和激发态寿命缩短。此外,我们测量了腔纳米结构内双空位基态自旋的相干控制,并通过动态解耦证明了扩展的相干性。这种自旋腔系统代表了使用碳化硅的可扩展长距离纠缠协议的进步,该协议需要来自空间分离的单个量子比特的不可区分光子的干涉。关键词:碳化硅、双空位、单自旋缺陷、珀塞尔增强、相干自旋控制、光子晶体腔
摘要:甲基铵三溴化铅 (MAPbBr 3 ) 钙钛矿单晶被证明是出色的直接 X 射线和伽马射线探测器,具有出色的灵敏度和低检测限。尽管如此,对于高剂量电离辐射对这种材料的光物理影响的深入研究仍然缺乏。在这项工作中,我们介绍了关于受控 X 射线辐照对 MAPbBr 3 单晶光电特性影响的研究结果。使用成像 X 射线管在空气中进行辐照,模拟医疗设施中的实际应用。通过表面光电压谱,我们发现 X 射线照射会猝灭材料中的自由激子并引入新的结合激子物质。尽管有这种剧烈的影响,但晶体在黑暗和低湿度条件下储存 1 周后会恢复。通过 X 射线光电子能谱,我们发现新束缚激子物种的起源是溴空位的形成,导致材料介电响应的局部变化。恢复效应归因于大气氧和水对空位的填充。关键词:混合铅卤化物钙钛矿、甲基铵溴化铅、电离辐射、表面光电压谱、X 射线光电子能谱、激子
单原子催化剂(SAC)吸引了广泛的兴趣,以催化燃料电池和金属 - 空气电池中的氧气还原反应(ORR)。ever,具有高选择性和长期稳定性的SAC的发展是一个巨大的挑战。在这项工作中,碳空位修饰的Fe – N – C SAC(Fe H –N – C)实际上是通过微环境调制设计和合成的,可实现对活性位点的高效利用和电子结构的优化。Fe H –N-C催化剂表现出0.91 V的半波电势(E 1/2),足够的耐用性为100 000电压循环,具有29 mV E 1/2损失。密度功能理论(DFT)的计算证实,金属– N 4个位点周围的空缺可以减少OH*的吸附自由能,并阻碍金属中心的溶解,从而显着增强ORR动力学和稳定性。因此,在可充电锌 - 空气电池(ZABS)中,Fe H –N-C SAC在1200小时内提出了高功率密度和长期稳定性。这项工作不仅将通过金属– N 4个位点的合理调制来开发高度活跃和稳定的SAC,而且还可以深入了解电子结构的优化以增强电催化性能。
卤素空位的迁移是铅卤化物钙钛矿中相分离和材料降解的主要原因之一。在这里,我们使用第一性原理密度泛函理论来比较立方 CsPbBr 3 的块体和 (001) 表面溴空位的迁移能垒和路径。我们的计算表明,由于表面的软结构允许键长变化大于块体,因此表面可能促进溴空位在这些钙钛矿中的迁移。我们计算出表面轴向到轴向溴空位迁移的迁移能仅为块体值的一半。此外,我们研究了用四种不同的碱金属卤化物单层改性表面的效果,发现对于 NaCl 钝化系统,迁移势垒几乎增加到块体值。发现迁移势垒与 CsPbBr 3 表面和碱金属卤化物单层之间的晶格失配有关。我们的计算表明,表面可能在介导卤化物钙钛矿中的空位迁移方面发挥重要作用,这一结果与具有大表面体积比的钙钛矿纳米晶体有关。此外,我们提出了通过使用碱金属卤化物盐钝化来抑制这一不良过程的可行方法。