NO-DRONE 探测器 34 North Drones 于 2019 年 10 月宣布与 IDS North America 合作,为民用市场提供 NO-DRONE 雷达反无人机系统。NO-DRONE 雷达探测系统曾用于军事环境,旨在识别来袭的迫击炮、火炮和火箭弹等小物体,以及探测、定位和跟踪固定翼和旋翼无人机以及小型无人机。该系统提供 360° 全方位覆盖,无论白天还是夜晚,以及在恶劣天气条件下。该系统可以通过可选的“旋转提示”EO/IR 转塔和 RF 探测器进行升级,以增强无人机跟踪和识别能力。NO-DRONE 反无人机雷达系统利用一套 EMC/EMI 模拟工具来预测评估机场周围各种辐射和接收元件之间可能产生的干扰,从而模拟对任何现有导航设备合作伙伴已在中国湖海军航空武器站和国际上进行了演示和测试,该系统已安装在各个机场和监狱。NO-DRONE 系统还可以租用,由经过培训的操作员在移动平台上临时用于美国各地的设施和活动,随后在国际上用于无人机缓解,因为永久安装不切实际或不需要。
3.本北约标准化文件由北约发布。复制时需注明北约。北约在任何阶段均不对其标准化文件收取任何费用,且不打算出售。可从北约标准化文件数据库 ( https://nso.nato.int/nso/ ) 或通过您所在国家/地区的标准化机构获取这些文件。
caa.co.uk › 下载 PDF 2021 年 6 月 15 日 — 2021 年 6 月 15 日 试验包括使用电动、氢能和可持续航空的低碳飞机……开发测试环境:物理、数字和……可靠性。
图表目录 图 1:组织结构图。 ................................................................................................................ 16 图 2:识别功能危害、故障模式和缓解措施的 10 步法。 ...................................................................................................... 63 图 3:安全风险评估流程 ...................................................................................................... 71 表格目录 表 1:第 1 卷封面 ............................................................................................................. 13 表 2:第 1 卷修订记录 ...................................................................................................... 14 表 3:现场调查评估。 ...................................................................................................... 30 表 4:飞行前组装和功能检查。 ............................................................................................. 32 表 5:第 2 卷封面 ............................................................................................................. 35 表 6:第 2 卷修订记录 ............................................................................................................. 36 表 7:UA 物理特性描述 ................................................................................................ 38 表 8:UA 性能特性描述 ................................................................................................ 39 表 9:UAS 环境限制
1.6 为履行这一义务,并且随着行业寻求试验和开发 BVLOS UA 的运营,我们制定了这一空域政策概念,以描述我们认为适合现在和未来支持这项活动的空域结构,因为我们将向综合和非分离运营过渡。但是,CAA 注意到我们需要根据运营经验来评估和完善这一概念。因此,在此阶段,此处描述的概念被认为处于试验状态。CAA 将根据适当的行业利益相关者的反馈来评估和完善该概念,这些利益相关者将被邀请通过我们的监管沙盒试用该空域政策概念。
表格表 表 1:第 1 卷封面................................................................................................................ 13 表 2:第 1 卷修改记录.................................................................................................... 14 表 3:现场调查评估....................................................................................................... 30 表 4:飞行前组装和功能检查。 ................................................................ 32 表 5:第 2 卷封面 .......................................................................................................... 35 表 6:第 2 卷修订记录 ................................................................................................ 36 表 7:UA 物理特性描述 ............................................................................................. 38 表 8:UA 性能特性描述 ............................................................................................. 39 表 9:UAS 环境限制描述 ............................................................................................. 39 表 10:UA 构造描述 ............................................................................................. 40 表 11:UA 电力系统描述 ............................................................................................. 41 表 12:UA 推进系统描述 ............................................................................................. 43 表 13:UA 燃油系统描述 ............................................................................................. 44 表 14:UA 飞行控制系统描述 ................................................................................ 45 表 15:UA 导航系统描述 ............................................................................................. 47 表 16:DAA 系统描述 ............................................................................................. 48 表 17:CU 描述 ............................................................................................................. 49 表 18:C2链路描述 ................................................................................................................ 51 表 19:通信描述 ...................................................................................................... 52 表 20:起飞和着陆机制描述 ...................................................................................... 53 表 21:紧急恢复和安全系统描述 ................................................................................ 54 表 22:外部照明描述 ...................................................................................................... 55 表 23:有效载荷描述 ...................................................................................................... 57 表 24:地面支持设备描述 ............................................................................................. 58 表 25:维护描述 .............................................................................................................59 表 26:备件采购说明 ...................................................................................................... 60
有效的飞行计划需要有关各种潜在威胁的信息,例如恶劣天气或空域限制,以及在发生不可预见事件时可用的替代方案。飞行路线上的预期交通情况对于安全结果也至关重要,例如,可以在飞行前装载足够的燃料/能源供应。新兴的城市空中交通 (UAM) 概念引入了动态密度 (DD) 指标,以预测可能导致飞机之间失去分离或运行效率降低的空域拥堵。受传统空中交通管理的动态密度指标研究和双向高速公路类比的启发,我们为一部分空域 (UAM 走廊) 开发了一个动态密度指标,该指标汇总了五个因素的影响:飞机密度、人口稠密集群的密度、人口稠密集群中的平均飞机数量、飞机之间的平均距离以及飞机之间的最小距离。本研究描述了我们的方法、原理、用例和可视化技术,以便有效地向操作员呈现 DD 指标,以便做出明智的决策。我们还提出了一种验证指标的方法。但是,验证仍然是未来工作的一部分。
• 飞机的垂直距离(高度、海拔)以英尺(ft)表示 • 障碍物的高度以米(m)表示 • 导航、空域预留标绘和 ATC 分离的距离以海里(nm)表示 • 较短的距离以米(m)和千米(km)表示(当高度等于或超过 5000 米时) • 质量以千克(kg)和克(g)表示(当质量小于 1kg 时) • 速度以节(kt)表示 o 注意:低于 50kt 的速度也可以米/秒(m/s)表示