最近,Visual Transformer(VIT)及其以下作品放弃了卷积,并利用了自我发项操作,比CNN获得了可比甚至更高的精度。最近,MLP-Mixer放弃了卷积和自我发项操作,提出了仅包含MLP层的体系结构。为了实现交叉补丁通信,除了通道混合MLP外,它还设计了其他令牌MLP。在诸如JFT-300M之类的极限数据集上进行训练时,它会取得令人鼓舞的结果。,但是当在ImagEnet-1k等中等规模的数据集上训练时,它的表现不如其CNN和VIT对应。MLP混合使用的性能下降激励我们重新考虑令牌混合MLP。我们发现,MLP混合中的令牌混合操作是深度卷积的变体,具有全局接收场和空间特异性配置。在本文中,我们提出了一种新颖的纯MLP体系结构,即空间移位MLP(S 2 -MLP)。不同于MLP混合器,我们的S 2 -MLP仅包含通道混合MLP。我们设计了一个空间换档操作,以实现通过补丁之间的通信。它具有局部接收场,是空间的 - 不可知论。同时,它无参数且有效地计算。在Imagenet-1K数据集训练时,提出的S 2 -MLP比MLP混合剂具有更高的识别精度。同时,S 2 -MLP在ImageNet-1k数据集上具有出色的性能,具有更简单的架构,较少的失败和参数。
该设备(图1)安装在由Kansai大学及其合作者开发的Cubesat上(项目经理:副教授Masaki R. Yamagata,化学,材料和生物工程学院)。Denden-01于2024年12月9日(JST)从国际空间站(ISS)部署。部署后,通信测试成功地检索了卫星遥测,证实电池维持其目标的工作温度范围,即使在寒冷条件下,电池也不会降低较低的温度限制。这是世界上首次成功的空间演示,用于用于机载设备的基于无机SSPCM的温度稳定设备。
compasse代表了与黑暗和放射奎特天空的保护,外太空的安全和可持续使用以及相关问题的利益,并使AAS成员成为保护美国天文学的有效拥护者。compasse.aas.org
本着和解的精神,我们要承认,这次聚会是在艾伯塔省的传统土地上进行的,这是许多多样化的原住民,梅蒂斯和因纽特人民的所在地。我们承认,这片土地是传统的会议场地,以历史遗忘的方式表达了其原始民族和创造这个国家的故事。
咨询委员会 - 27804(4月18日); 73728(9月11日)航空委员会咨询委员会 - 90073(11月14日)咨询委员会,科学委员会 - 18441年(3月13日)咨询委员会;航空委员会 - 13380(2月22日); 50378(6月13日)咨询委员会;科学委员会 - 76512(9月18日)咨询委员会; STEM参与委员会 - 45028(5月22日)航空安全咨询小组 - 7745(2月5日); 22743(4月2日); 56778
最重要的是在T细胞表面上的CD28共刺激分子和在抗原呈递细胞上的CD80分子的组合(10)。在T细胞激活的双重信号传导系统中,CD28激活的不存在导致过度激活诱导的细胞死亡(AICD)。然而,在CD80与CD28结合后,可以避免T细胞的AICD,从而导致T细胞的耐用抗肿瘤活性(11)。此外,CD80和CD28的组合还可以增强T细胞的细胞因子(例如IL-2)的分泌。此外,它可以增强CD4+ T细胞的增殖以及CD4+和CD8+ T细胞的细胞毒性活性(4)。最近的研究表明,共刺激分子CD28对T细胞的活性不足会导致T细胞的抗肿瘤活性降低(12)。然而,随着CD28激活信号的增加,T细胞的抗肿瘤活性得到了增强(13,14)。因此,通过CD80在T细胞表面的CD28分子激活可能会提高T细胞对实体瘤的杀伤效率,从而提供一种新的免疫疗法方法。
可靠性模型的应用 ................................................................ 16 故障 .............................................................. 18 .............................................................. 9 附加阅读材料 ..............................................................................................
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术