摘要 CRISPR/Cas9 的精确靶向基因组编辑是模型和非模型系统中基础研究和转化方法的关键。尽管迄今为止在所有测试的物种中都处于活跃状态,但编辑效率仍有改进空间。细菌 Cas9 需要通过与核定位信号 (NLS) 融合有效地穿梭到细胞核中。通常会添加额外的肽标签(例如 FLAG 或 myc 标签)以立即检测或直接纯化。通常通过施用预组装的蛋白质/RNA 复合物来获得即时活性。我们提出了“hei 标签(高效标签)”,它可以在以 mRNA 形式提供时增强 CRISPR/Cas 基因组编辑工具的活性。将 hei 标签(一种通过灵活的接头与优化的 NLS 偶联的 myc 标签)添加到 Cas9 或 C-to-T(胞嘧啶到胸腺嘧啶)碱基编辑器中可显著提高各自的靶向效率。这导致双等位基因编辑增加,但等位基因变异减少,表明即使在早期发育阶段也具有即时活性。hei-tag boost 在从鱼类到哺乳动物的模型系统中都很活跃,包括组织培养应用。只需简单添加 hei-tag,即可立即升级现有且可能高度适应的系统,并建立可立即应用于 mRNA 水平的新型高效工具。
5宁博海洋学研究所,宁波315832,中国在这项工作中,作者提出了一种新型策略,以通过Nano-Graphene空心球从Prussian Blue Analogue CO(CO 3 [CO(CN)6] 2。使用低成本材料的单锅溶液方法设计用于通过不同温度和前体的HCl蚀刻步骤进行退火来合成阴极。这使该前体制造的Li -S电池感到惊讶,表现出了显着的电荷 - 均电稳定性(570.4 mA H G -1(以1C电流密度为1C)和出色的速率性能(1145.5,717.9,672.5 ma Hg -1 in 0.1,1.0,2.0 Ag -1.0,2.0 Ag -1 ag -1 ag -1 ag -1 restive dys crespenty d pertive of。结果表明,稳定的三维多层空心球结构减轻了硫的体积膨胀,这对多硫化物的吸附产生了重大影响,并抑制了“穿梭效应”。此外,在这种结构中,氮的丰富掺杂产生了许多缺陷和活性位点,从而改善了多硫化物的界面吸附。这是CO 3 [CO(CN)6] 2的富有想象力的应用,充当Li-S电池的阴极材料,该材料提供了一种独特的材料设计方法,可以实现用于Li-S电池的硫阴极的高性能。
抽象光是决定植物的整体生长和发展的重要环境提示。然而,基于光信号网络的分子机制被表观遗传机制掩盖,在该机械中,可逆的乙酰化和脱乙酰基化在调节光调节基因表达中起着至关重要的作用。在本文中,我们证明了HDA15通过脱乙酰化,蛋白质相互作用和亚隔室化来抑制光信号网络中的主开关。HDA15 T-DNA突变系表现出光性低敏,显着降低了HY5和PIF3转录水平,导致黑暗中的长羟基托型表型,而其过表达的HY5转录本升高和短核基表型。体内和体外结合测定进一步表明,HDA15在调节COP1的抑制活性的核内与COP1直接相互作用。与COP1-4突变体穿越HDA15-T 27导致短八核基和矮人的表型,让人联想到COP1-4突变体,表明COP1是HDA15的epissication。尽管光信号标志着HDA15的核细胞梭子穿梭,但COP1的存在会触发其核定位。提出了一个工作模型,阐明了在光和黑暗条件下HDA15和COP1之间的协同相互作用。
我问我的朋友:“你读过屠格涅夫的作品吗?”她毫不犹豫地给出了否定的回答。她的大脑里有她读过的小说的数据库吗?她的大脑在使用搜索算法吗?如果没有,我们还能如何想象这一壮举的实现?我问:“昨晚吃饭时坐在你旁边的那个男人叫什么名字?”她不记得了。半小时后,当我们谈论其他事情时,她说:“我现在想起来了,他叫杰罗姆。这个名字突然出现在我的脑海里。”如果大脑使用搜索算法来做到这一点,它会不会与前面的例子不同,会不会是一个更慢但更有条理的过程?我们能想象一个由大脑的“硬件”制成的设备,可以执行搜索算法吗?或者任意算法?在我(Davis,2017)的文章中,我强调图灵完备所需的东西很少。毫无疑问,可以用大脑的神经元建造一台通用计算机。然而,我们尚不清楚机器人能否进化。遗传密码中氨基酸由字符串编码的例子表明,这种可能性并非遥不可及。事实上,口语和书面语也是代表物体、动作和概念的任意符号的例子。有人穿过繁忙的街道,熟练地穿梭于车流之中。如何编写程序让机器人做到这一点?直到最近,人们才提出了一种使用大量数值计算的方法。如今,人们可以考虑另一种方法,即为此目的“训练”多层神经网络。想象大脑做这样的事情肯定比执行涉及大量算术计算的过程更容易。
幽门螺杆菌的惊人特征之一是临床分离株之间广泛的遗传多样性。这种多样性归因于突变率升高,DNA修复受损,DNA转移和频繁重组事件。质粒也已在幽门螺杆菌中鉴定出来,但尚不清楚连接是否可以导致临床分离株之间的DNA转移。检查幽门螺杆菌是否具有共轭质粒转移的固有能力,将穿梭载体引入了幽门螺杆菌中,其中含有含有共轭Incp质粒质粒RP4的原始序列,但没有动员(MOB)基因。表明,这些载体可以稳定复制并在幽门螺杆菌菌株中动员。还证明,幽门螺杆菌染色体上携带的trag和弛豫酶(RLX)同源物对于质粒转移至关重要。引物扩展研究和诱变进一步证实了幽门螺杆菌中的弛豫酶同源物RLX1编码能够在RP4 ORIT上作用的功能酶。此外,这项研究的发现表明,TRAG和RLX1独立于先前描述的IV型分泌系统,包括由CAG致病性岛和梳子转化设备编码的,在介导H. Pylori菌株之间的结合质粒DNA转移中。
室温钠硫 (RT Na-S) 电池具有高理论能量密度和低成本的特点,最近因潜在的大规模储能应用而受到广泛关注。然而,多硫化钠的穿梭效应仍然是导致循环稳定性差的主要挑战,这阻碍了 RT Na-S 电池的实际应用。在此,设计了一种多功能混合 MXene 中间层以稳定 RT Na-S 电池的循环性能。混合 MXene 中间层包括大尺寸的 Ti 3 C 2 T x 纳米片内层,随后是玻璃纤维 (GF) 隔膜表面的小尺寸 Mo 2 Ti 2 C 3 T x 纳米片外层。大尺寸的 Ti 3 C 2 T x 纳米片内层为可溶性多硫化物提供了有效的物理阻挡和化学限制。小尺寸的 Mo 2 Ti 2 C 3 T x 外层具有出色的多硫化物捕获能力,并加速了多硫化物转化的反应动力学,这是由于其优异的电子电导率、大的比表面积和富含 Mo 的催化表面。因此,采用这种混合 MXene 夹层改性玻璃纤维隔膜的 RT Na-S 电池在 1 C 下在 200 次循环中提供稳定的循环性能,容量保持率提高了 71%。这种独特的结构设计为开发高性能金属硫电池的基于 2D 材料的功能夹层提供了一种新颖的策略。
超级电容器[18]、锌空气[19,20]和锂空气电池[21]以及锂离子、钠离子和钾离子存储负极。[22–24] 不同钴磷化物(Co x P:CoP+Co 2 P)[25]与氧化钴(Co x P/CoO)[26]的组合使这些材料多功能化并提高了其性能。另一方面,Co x P和Co 3 (PO 4 ) 2的联合作用对锂硫电池电化学性能和多硫化物转化机理的影响尚未研究。尽管钴磷化物具有广泛的潜在应用,但它们通常通过复杂的合成路线合成,包括在过量的磷源和还原剂中对钴或钴氧化物进行磷化。[22,24–26] 最近,Li等人。报道了使用化学计量的脱氧核糖核酸 (DNA) 作为 P 源,通过简便的静电纺丝和热处理成功合成了 Co 2 P/Co 2 N/C。[27] 另一方面,由于聚丙烯腈(碳源)溶液中无机组分的溶解度较差,限制了 Co 2 P 的含量。相反,使用水和乙醇可溶性的聚乙烯吡咯烷酮 (PVP) 作为碳源,可以合成无机组分含量高的碳复合材料。[28] 此外,还证实了 PVP 衍生的碳/SiO 2 复合纳米纤维垫可以作为多功能中间层,有效防止多硫化物的穿梭,并提高 S 基锂电池的电化学性能。[29,30]
随着深度神经网络 (DNN) 在嵌入式设备上的广泛应用,硬件的能效和尺寸成为关注焦点。例如,最近基于 Arduino 的 MAIXDuino 套件集成了用于卷积神经网络 (CNN) 的 K210 神经网络处理器,旨在开发嵌入式人工智能 (AI) 和物联网 (IoT) 解决方案 [1],[2]。在这种 Edge-AI 加速器专用集成电路 (ASIC) 中,DNN 模型在图形处理单元 (GPU) 上使用基于梯度下降的反向传播或 Backprop 算法 [3]–[5] 进行离线训练,然后“传输”到“推理”ASIC。反向传播是计算密集型的,由于冯诺依曼瓶颈,大量数据在内存和 CNN 加速器之间不断穿梭,因此会消耗大量能量。人们越来越重视创新“非冯·诺依曼”架构,即在内存内部执行计算。此类架构有望利用超越摩尔或后 CMOS 非易失性存储器 (NVM) 技术 [6]。这需要对整个设备、电路和算法层次结构中的非冯·诺依曼计算架构进行跨层研究。神经启发或神经形态片上系统 (NeuSoC) 架构将内存计算与基于稀疏尖峰的计算和通信相结合,以实现接近生物大脑能效的超低功耗运行 [7]。基于 NVM 的计算架构采用 1R 或 1T1R 交叉开关或交叉点架构,其中 DNN 权重存储在 NVM 单元的状态中,神经元驻留在
失调与神经发育和神经退行性疾病均相关,并且这些疾病中的许多特征是认知功能受损。HDAC4在脊椎动物和无脊椎动物中的细胞核和细胞质之间穿梭,核和/或细胞质HDAC4的量的改变与这些疾病有关。在果蝇中,HDAC4在记忆的调节中也起着至关重要的作用,但是,其作用的机制尚不清楚。核和细胞质限制的HDAC4突变体,以研究HDAC4亚细胞分布,转录变化和神经元功能障碍之间的机械联系。在蘑菇体形态发生,眼睛发育和长期记忆中的定义与核HDAC4的丰度增加相关,但与最小的转录变化有关。尽管HDAC4在神经元核内将MEF2隔离为点状灶,但在HDAC4的过表达时未观察到MEF2活性的改变,而MEF2的敲低对长期记忆没有影响,这表明HDAC4可能不会通过MEF2作用。为此,HDAC4中MEF2结合位点的突变也对核HDAC4诱导的长期记忆或眼睛发育中的损伤没有影响。相反,MEF2结合位点的突变以及通过MEF2 RNAi的共表达来改善蘑菇体形态发生的缺陷,因此核HDAC4通过MEF2起作用以破坏蘑菇体的发育。这些数据提供了有关HDAC4亚细胞分布失调的机制,会损害神经功能,并为进一步研究提供了新的途径。
线粒体都存在于除成熟的红细胞外的所有哺乳动物细胞中。线粒体由几种用于葡萄糖,脂肪酸,氨基酸和生物能途径的代谢途径,用于ATP合成,膜电位和活性氧的产生。在肝脏中,肝线粒体在肝脂肪变性中起关键作用,因为线粒体代谢产生乙酰辅酶A乙酰辅酶A,这是合成脂质和胆固醇的基础。线粒体内膜不可渗透代谢物,还原等效物以及磷酸盐和硫酸盐等小分子。因此,线粒体穿梭和载体起着这些代谢产物和分子在整个膜上的流入和外排的途径。这些班车和线粒体酶的信号调节在协调线粒体代谢以适应肝脏代谢应激中代谢途径的胞质部分方面起着关键作用。有趣的是,线粒体蛋白SH3结合蛋白5(SAB/ SH3BP5)和C-JUN N末端激酶(JNK)的相互作用在JNK持续激活JNK和磷酸化 - JNK(P-JNK)介导的Lipogenitication的激活途径中的持续激活中是关键作用。SAB的敲除或敲除可以防止或逆转肝脏脂肪变性,炎症和纤维化,以及改善的代谢不耐受和能量消耗。此外,阻塞SAB肽可防止棕榈酸诱导的P-JNK与SAB的相互作用并抑制线粒体生物能力,这意味着P-JNK对线粒体代谢的影响。本综述的重点是在代谢胁迫条件下线粒体代谢产物的流动以及线粒体和线粒体应激信号在肝脂肪变性中的贡献。