在过去的二十年中,早期非小细胞肺癌(NSCLC)的治疗已大大改善。尽管手术不是唯一的选择,但叶切除术仍然是可手术患者的金标准治疗类型。对于无法手术的患者,应提供立体定向身体放射疗法(SBRT),以达到很高的局部控制和总体存活率。使用SBRT,我们可以精确照射高剂量的小型,良好的病变。要选择适当的分级时间表,确定肺部肿瘤的大小,定位和程度很重要。引入新颖和进一步开发的计划(轮廓指南,诊断图像应用,计划系统)和交付技术(运动管理,图像引导放射疗法)导致副作用率较低,并且具有更大的构型目标体积覆盖率。这项研究的目的是总结有关肺SBRT的当前发展,随机研究,指南,重点是增加局部控制和“适应性”患者的总体控制和总体率的可能性,因此SBRT将有资格代替手术。
摘要:在海洋工程领域和海底结构的维护领域中,准确的下距离定量起着至关重要的作用。然而,由于向后散射和特征降解,这种测量的精度通常在水下环境中受到损害,从而对视觉技术的准确性产生不利影响。在应对这一挑战时,我们的研究引入了一种开创性的水下对象测量方法,将图像声纳与立体声视觉结合起来。这种方法旨在用声纳数据来补充水下视觉特征检测的差距,同时利用Sonar的距离信息进行增强的视觉匹配。我们的方法论将声纳数据无缝地集成到立体声视觉中使用的半全球块匹配(SGBM)算法中。这种集成涉及引入一个新型的基于声纳的成本术语并完善成本汇总过程,从而提高了深度估计的精度,并丰富了深度图内的纹理细节。这代表了对现有方法的实质性增强,尤其是在针对亚偏度环境下量身定制的深度图的质地增强中。通过广泛的比较分析,我们的方法表明,测量误差大大减少了1.6%,在挑战水下场景方面表现出了巨大的希望。我们算法在生成详细的深度图中的适应性和准确性使其与水下基础设施维护,勘探和检查特别相关。
Volume conduction models of the head are widely used for source reconstruction of electro- (EEG) and magnetoencephalography (MEG) activity ( Malmivuo and Plonsey, 1995 ; Nunez and Srinivasan, 2006 ; Hansen et al., 2010 ), and are used to understand and optimize the effects of electrical ( Neuling et al., 2012 ; Rampersad et al., 2014 )和磁性脑刺激(Janssen等,2013),用经颅电气,深脑和磁刺激(TES,DBS和TMS)颅内和颅外应用。尽管有许多模型研究可以通过比较不同的模拟模型来量化电势数值的准确性(在EEG情况下)和磁场(在MEG情况下)(在MEG情况下),但研究了较少的研究研究,研究了人类和模拟的Elliss and ush and droissells and and and and and and and and and and eSte and and and and and and and and and and and and and and and and and and and。 Al。,2017)。体积传导模型的几何,电和数值方面是固有的。例如,BEM假设几何形状由具有同质和各向同性的电导率的嵌套隔室组成,从而导致对三角形的表面网格之间的边界进行几何描述,其中大多数BEM的实现都需要触摸或相交的情况,并且在deSect and triangles不得不触摸或相互交织。另一个例子是白质传导率的假设是各向异性,它将数值方法的选择限制为FEM或FDM。涉及计算机模拟的验证研究中经常采用的策略是将重点放在其中一个或两个因素上,并保持其余方面固定。先前的工作表明,由体积传导模型产生的潜在的准确性取决于许多因素,例如模型的几何代表(Vorwerk等,2014),不同组织的电导率(Oostendorp等,2000,2000; Aydin等,2014; Aydin et al。,2014年),Sensers nermane alser(Cuplmane alser),Etermane et ner ner ner ner ner ner ner ner ner ner ner。 2020a),来源的表示[例如,偶极子(De Munck等,1988)或双梁(Vermaas等,2020b)],以及用于解决数学问题的方法[例如,具有分析公式(De Munck and Peters,De Munck and Peters,1993; Zhang,1995; Zhang; Mosher et efiment; Mosher等人,2001年; Oostenveld和Oostendorp,2002年; Akalin-Acar和Gençer,2004元素方法(Marin等,1998; Schimpf等,2002; Miinalainen等,2019)]。通过在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,颅骨,血管或dura的骨骼部分需要高分辨率,需要在模型中进行高分辨率,以便在模型中具有足够的地理位置,以使其具有足够的详细信息, 是在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,以使其具有足够的地理位置的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息, 进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk是在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,以使其具有足够的地理位置的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息, 进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk是在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,以使其具有足够的地理位置的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息, 进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk进行了特定的联系。 ; Piastra等人,2018年)。在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk在Nüßing等人中。(2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。Piastra等人。vorwerk(2018),更改了数值方法和源模型,而几何形状保持恒定。
卫星服务的双重使用提出了有关反对其在武装冲突期间功能的合法性的问题。本文的重点是研究国际人道主义法的关键原则的内容,即的区别和相称性,关于它们在空间活动中的应用。在这种情况下,分析了对军事行动的太空服务投入前后评估的标准。还观察到由于违反人道主义法而产生空间碎片云的风险。因此,开发和批准其他方案IV的建议将构成平民物体与军事目标区分开,并确定与攻击成正比的损害的范围和程度,被认为是能够在空间和网络战争期间节省外层空间资源和空间服务的手段。
1 德国慕尼黑工业大学伊萨尔右翼医院放射肿瘤学系 2 德国诺伊尔贝格慕尼黑亥姆霍兹中心亥姆霍兹 AI 3 德国慕尼黑工业大学伊萨尔右翼医院诊断和介入神经放射学系 4 德国慕尼黑工业大学 TranslaTUM - 癌症转化中央研究所 5 德国慕尼黑工业大学信息学系 6 瑞士苏黎世大学放射肿瘤学系 7 德国马格德堡马格德堡大学医院放射肿瘤学系 8 德国耶拿弗里德里希-席勒大学耶拿大学医院放射治疗和放射肿瘤学系 9 瑞士苏黎世大学定量生物医学系 10慕尼黑,德国慕尼黑 11 海德堡大学医院放射肿瘤学系,德国海德堡 12 海德堡放射肿瘤学研究所 (HIRO),国家放射肿瘤学中心 (NCRO),德国海德堡 13 德国哥廷根大学医学中心放射肿瘤学系,德国哥廷根 14 阿劳州立大学 KSA-KSB 放射肿瘤学中心,瑞士阿劳 15 德国富尔达综合医院放射肿瘤学系,德国富尔达 16 德国基尔石勒苏益格-荷尔斯泰因大学医学中心放射肿瘤学系 17 德国弗莱堡大学医学中心放射肿瘤学系,德国弗莱堡 18 德国癌症联盟 (DKTK),弗莱堡合作伙伴中心,德国弗莱堡 19 塞浦路斯欧洲大学德国肿瘤中心放射肿瘤学系,塞浦路斯利马索尔20 德国法兰克福及北德 Saphir 放射外科中心,基尔,德国 21 德国法兰克福大学医院神经外科系,法兰克福,德国 22 德国慕尼黑翻译放射医学研究中心 (DKTK),慕尼黑合作网站,慕尼黑,德国 23 德国慕尼黑亥姆霍兹中心放射医学研究所 (IRM),放射科学系 (DRS),慕尼黑,德国 24 德国慕尼黑工业大学医学人工智能与信息学研究所
在过去十年中,立体定向放置电极已经成为针对多种神经和精神疾病进行深部脑记录和刺激的黄金标准。然而,目前的电极在空间分辨率和记录小群体神经元(更不用说单个神经元)的能力方面有限。在这里,我们报告了一种创新的、可定制的、单片集成的人体级灵活深度电极,它能够记录多达 128 个通道,并能够记录脑组织 10 厘米深度。这种薄的、探针引导的深度电极能够记录局部场电位和单个神经元活动(动作电位),并已在不同物种中得到验证。该设备代表了制造和设计方法的进步,扩展了临床神经病学主流技术的功能。
现代信息技术的发展导致对具有复杂表面轮廓和纳米级表面粗糙度的微光学元件的需求巨大。因此,各种微纳加工技术被用于制造微光学元件和系统。飞秒激光直写(FsLDW)利用超快脉冲和飞秒激光的超强瞬时能量进行微纳加工。FsLDW表现出各种优异的性能,包括非线性多光子吸收、超越衍射极限的高精度加工和可加工材料的通用性,展示了其在三维(3D)微纳制造中的独特优势和潜在应用。FsLDW已在各种微光学系统的制造中展示了其价值。本研究详细介绍了FsLDW的三种典型原理、几种提高加工性能的设计考虑因素、可加工材料、成像/非成像微光学元件及其立体系统。最后,对FsLDW支持的微光学元件和立体系统的未来研究方向进行了总结和展望。
有许多因素可能会影响电池的降解行为,例如充电循环的数量或充电率。在这里,我们研究了工作温度对锂离子正极电极中微结构结构降解的影响。为此,微型结构的特征是在不同工作温度下在6C(10分钟)下循环的阴极,即20℃,30°C,30°C,40°C和50°C,每种工作条件扫描扫描电子显微镜(SEM)图像(SEM)图像的crossection Elector Simarcopoy(SEM)图像。5 mn 0。3 CO 0。2 O 2(NMC532)电极,以确定结构描述符,例如全局颗粒孔隙率,裂纹尺寸/长度/宽度/宽度分布,孔隙度以及单个颗粒的特定表面积分布。此外,已经部署了一种立体方法来研究局部粒子孔隙度,该孔隙度是距离粒子中心的距离的函数。结果表明,颗粒孔隙度随循环温度的升高而增加。粒子孔隙度在粒子中心最大,沿粒子半径降低至外部。粒子表面积在四个循环温度的老化条件下相似。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
1。如果您在开车时必须使用耳塞,请确保您的注意力完全专注于驾驶安全。成为负责任的驾驶员,并遵守当地法律。2。放置在儿童无法达到的区域,永远不要让他们玩耳塞,而且案例构成了小零件作为窒息危险。3。遵守所有指定区域,例如医院,电子限制性和危险环境,需要关闭电气设备。4。在登上飞机之前关闭耳塞。在空姐开始询问时请勿使用它。5。切勿在任何安全气囊部署区域上安装或存放耳塞,因为部署会导致严重伤害。6。不要试图拆卸耳塞,因为它不包含可使用的组件。7。耳塞在内部电池内建造,应根据当地法规将其处置,而不是作为家庭废物。