已发现 miRNA 通过与各种调节蛋白结合在致癌作用中发挥关键作用。一种致病分子被鉴定为 miRNA155,当其过度表达时会导致致癌作用并导致端粒脆弱。血液中的 miRNA155 水平可用于癌症的早期筛查。已鉴定出多种抗癌药物,如阿霉素,它们通过与 DNA 和 DNA 结合酶结合来检查其表达水平。在本研究中,使用阿霉素及其类似化合物分析它们与 miR155 DNA 的结合以抑制 miRNA155 合成,并计算它们的结合能。根据对接、ADME 和毒性结果,吗啉基阿霉素用于分子动力学研究,并被鉴定为潜在的候选药物。
G-四链体 (G4) 是一种非规范的 DNA/RNA 结构,在 DNA 复制、 1 a 重组、 1 b 转录调控、 1 c 维持基因组稳定性 1 d 和衰老中发挥重要作用。 1 e G4 形成序列遍布整个人类基因组,但它们在端粒、 2 a 免疫球蛋白转换区 2 b 和原癌基因启动子中最为普遍。 2 c 端粒酶活性在大多数人体细胞中受到抑制,干细胞和淋巴细胞除外, 3 a 但在大多数肿瘤细胞中上调。 3 b 未折叠的单链 DNA 是最佳端粒酶活性所必需的;而 G-四联体的形成会抑制端粒酶活性。 4 因此,G4 结构被认为是阻止
Waylon Hastings博士于8月1日加入营养系助理教授。在2013年从得克萨斯A&M大学获得了生物化学,遗传学和数学的本科学位后,他获得了博士学位。 2020年宾夕法尼亚州立大学的生物行为健康与生物伦理学专业。以前,他是杜兰大学医学院的博士后研究科学家,他与端粒研究网络和Metabo Lomics研究(COMETS)合作,开发了衡量“生物学年龄”和人类功能下降的方法。计划继续在德克萨斯州A&M继续这项工作,扩大了他的研究企业,以提出代谢压力源如何影响这些措施的痛苦,以回答有关衰老和疾病机制的问题。
摘要:平滑肌肉瘤 (LMS) 是一种侵袭性亚型软组织肉瘤,起源于平滑肌细胞,最常见于子宫和腹膜后。LMS 是一种异质性疾病,具有多种临床和分子特征,尚未完全了解。分子分析发现了可能适合治疗的靶点,尽管这尚未转化为批准的 LMS 靶向疗法。本综述将探讨分子分析的历史和最新发现,重点介绍当前研究的有希望的途径,并提出可能的策略,以实现 LMS 的分子匹配治疗目标。我们专注于针对 DNA 损伤反应、富含巨噬细胞的微环境、PI3K/mTOR 通路、表观遗传调节剂和端粒生物学。
蜂窝可以用许多不同的材料构成。最常见的制造方法是将平板材料与偏移的粘合剂粘合在一起,然后将其膨胀以打开单元。这种技术通常用于用纸或铝制品制造蜂窝。相反,蜂窝可以用热塑性材料构成,方法是将型材通过模具挤出,然后通过热熔将它们连接起来形成大块,从而无需使用粘合剂。无论使用哪种方法,都可以像泡沫或端粒轻木一样从大块蜂窝中切割出板材。但是,从挤压型材上切下的板材在芯的纵向和横向上具有与粘合和膨胀蜂窝不同的机械性能。挤压蜂窝,例如碳芯塑料蜂窝,在任一轴上具有相同的特性。
CHIREC 国际学校,印度海得拉巴 摘要 截至 2023 年 11 月,已有 676 人进入太空。随着这个数字每年都在不断上升,并且进一步的长期太空探索计划甚至延伸到 2030 年代,对恶劣太空条件对人体生理、遗传学和一般系统带来的挑战进行全面分析变得越来越重要。了解这些因素反过来可以帮助重塑地球上的医疗技术,例如使用压力可调节服来对抗产后出血患者的极端加速和重力变化。本文深入探讨了两个主要主题:首先,微重力、银河宇宙射线和隔离等条件对端粒长度、神经眼科和心脏病学等系统的影响;其次,通过分析 NASA 双胞胎研究以及医学应用的二次研究,这些困难如何用于推进地球疾病的治疗。这对于为未来的太空任务和医学的可能发展(无论是在太空还是在地球上)制定框架和参考领域至关重要。关键词:太空条件、NASA 双胞胎研究、人体生理学、遗传学、医学应用。简介 本文的目的是评估微重力、银河宇宙射线(一种太空辐射)和物理隔离对端粒长度、DNA损伤反应、免疫反应、肌肉系统、线粒体、心脏病学、神经眼系统、心理学(“脱离”效应)和认知表现的影响,以及这些影响如何在综合现有研究并提供新视角的同时,为地球医学带来新的进步。2015 年 3 月,NASA(美国国家航空航天局)的 HRP(人类研究计划)对一对同卵双胞胎宇航员启动了一项为期 340 天的调查,称为 NASA 双胞胎研究 1 。调查的目的是“观察宇航员在太空环境中与地球上的日常生活相比,在身体、分子和认知方面会发生什么变化”(NASA 2 )。
一类DNA折叠/结构统称为G-四链体(G4),通常在鸟嘌呤富基因组的区域中形成。G4 DNA被认为在基因转录和端粒介导的端粒维持中具有功能作用,因此是药物的靶标。导致鸟嘌呤四局部堆叠的分子相互作用的细节并不理解,这限制了G4序列的可药用性的合理方法。为了进一步探索这些相互作用,我们采用了电子振动 - 二维红外线(EVV 2DIR)光谱法,以测量由MyC2345核苷酸序列形成的平行链链G- Qu-Qu-Qu-Qu-Qubadruplex DNA的扩展振动偶联光谱。我们还跟踪了与G4折叠相关的结构变化,该变化是K + -ION浓度的函数,以产生进一步的见解。为了对折叠过程在振动耦合特性方面产生的结构元素进行分类,我们使用了使用密度功能理论的量子化学计算。这导致了与给定结构相关的耦合光谱的预测,这些耦合光谱与从EVV 2 -DIR光谱获得的实验耦合数据进行了比较。总体而言,在折叠过程中对102个耦合峰进行了实验鉴定并遵循。注意到了许多现象,并与折叠形式的形成相关。这包括频率变化,交叉强度的变化以及新耦合峰的出现。可以将新峰分配给复合物中特定化学基团之间的耦合,我们使用2DIR数据在我们的实验条件下为这种特定类型的G4提出了折叠序列。总体而言,实验2DIR数据和DFT计算的组合表明,在添加钾离子之前,在初始DNA中可能已经存在鸟嘌呤四重奏,但是这些四重奏是未储存的,直到添加钾离子为止,在这一点上形成了完整的G4结构。
了解物种间染色质构象的进化对于阐明基因组的结构和可塑性至关重要。线性远距离基因座的非随机相互作用以物种特异性模式调节基因功能,影响基因组功能、进化,并最终影响物种形成。然而,来自非模式生物的数据很少。为了捕捉脊椎动物染色质构象的宏观进化多样性,我们通过 Illumina 测序、染色体构象捕获和 RNA 测序为两种隐颈龟 (cryptodiran,藏颈龟) 生成从头基因组组装:Apalone spinifera (ZZ/ZW,2 n = 66) 和 Staurotypus triporcatus (XX/XY,2 n = 54)。除了在线性基因组中检测到的融合/裂变事件外,我们还检测到龟类的三维 (3D) 染色质结构与其他羊膜动物存在差异。也就是说,全基因组比较揭示了龟类染色体重排的不同趋势:(1)鳖科(Trionychidae)的基因组改组率较低,而鸡(可能是龟类的祖先)与核型高度保守;(2)动胸龟科(Kinosternidae)和翠龟科(Emydidae)的融合/裂变率中等。此外,我们还发现了一种染色体折叠模式,这种模式使以前在龟类中未检测到的“着丝粒 - 端粒相互作用”成为可能。“着丝粒 - 端粒相互作用”(本文发现)加上“着丝粒聚集”(之前在蜥蜴类中报道过)的组合龟类模式对于羊膜动物来说是新颖的,它反驳了以前关于羊膜动物 3D 染色质结构的假设。我们假设,在龟类中发现的不同模式起源于羊膜动物祖先状态,该状态由核结构定义,微染色体之间存在广泛的关联,这些关联在线性基因组改组后得以保留。
含有假定的 G-四链体形成序列的寡核苷酸(PQS;G ≥ 3 N x G ≥ 3 N x G ≥ 3 N x G ≥ 3)在阳离子存在下的生理缓冲条件下(Bochman 等人,2012 年)。由于其高热力学稳定性,组装的 G4 需要通过酶促分解。已经开发出体外用于监测 G4 形成的方法(Balasubramanian 等人,2011 年;Bryan 和 Baumann,2011 年)。使用这些方法已经证明了分解 G4 的酶活性。这些酶包括具有 G4 结合和解旋活性的 DNA 解旋酶,例如 BLM、WRN、PIF1、FANCJ、XPD、DNA2 和 RTEL1(Bochman 等人,2012 年;Maizels,2015 年)。使用计算机分析或荧光成像、免疫沉淀或 pull-down 实验来预测体内 G4 的形成,使用有价值的工具 - 例如特异性识别 G4 的免疫球蛋白和单链可变片段 (scFv) (Henderson 等人,2013)、G4 结合化合物 (Mendoza 等人,2016) 或 G4 结合蛋白 (Maizels,2015)。使用这些工具,可以通过免疫沉淀或针对纯化的基因组 DNA 或染色质的 pull-down 来识别 G4 位点,并且这些位点中的很大一部分重现了 PQS (Chambers 等人,2015;Hänsel-Hertsch 等人,2016;Lam 等人,2013;Muller 等人,2010)。 PQS 在基因的调控区(例如启动子、内含子或非翻译区 [UTR])中过度表达,包括致癌基因、重复区(例如端粒和 rDNA)和复制起点 (Maizels & Gray, 2013 )。使用抗体在人类细胞中进行的全基因组 G4 映射揭示了 G4 存在于基因调控区和端粒中 (Hänsel-Hertsch et al., 2016 ; Liu et al., 2016 )。许多 G4 被映射在转录起始位点周围,G4 形成的频率与相应基因的转录水平呈正相关 (Spiegel et al., 2021 ; Zheng et al., 2020 )。使用抗体对 G4-DNA 进行荧光标记,显示细胞核或染色体上存在颗粒状信号;一些信号位于端粒或着丝粒上 (Biffi et al., 2013; Henderson et al., 2013)。使用荧光标记化合物对 G4- DNA 进行可视化,可显示位于核仁中的较大信号,以及位于细胞核中的一些较小信号 (Rodriguez et al., 2012),或整个细胞核中均匀分布的信号 (Shivalingam et al., 2015)。然而,人们对使用体内成像获得的许多未表征信号的亚细胞或基因组位置了解甚少。越来越多的证据表明,在基因体内或周围形成的 G4 通过促进或抑制转录来调节基因活性 (Bochman et al., 2012; Mendoza et al., 2016)。尽管具有这些生物学含义,但 G4 在空间上阻碍了 DNA 复制和转录 (Bochman et al., 2012; Maizels, 2015)。这些生物事件的拖延会增加基因毒性损害的风险;G4 结构清除不足可能
通过组蛋白变体CENP-A的存在来定义并保持表观遗传学的定义和维持。尚不完全了解如何指定中心质体CENP-A位置并通过DNA复制确切地保持。 最近发布的端粒到核(T2T)基因组组件包含第一个完整的人类丝粒序列,为检查CENP-A位置提供了新的资源。 在多个细胞分裂之后,在同一细胞系列的克隆中映射CENP-A位置到T2T组装中高度相似的CENP-A位置。 相比之下,在不同人类细胞系的几个centromeres上表现出丝粒CENP-A上乳束,这证明了CENP-A富集的位置和人类细胞之间的KineTochore re裂位点不同。 在整个细胞周期中,通过DNA复制保持了其精确的位置,沉积在G1相中的CENP-A分子。 因此,尽管在DNA复制过程中CENP-A稀释,但CENP-A仍将CENP-A精确地重新加载到子丝粒内的相同序列上,从而在人类细胞中保持独特的丝粒身份。如何指定中心质体CENP-A位置并通过DNA复制确切地保持。最近发布的端粒到核(T2T)基因组组件包含第一个完整的人类丝粒序列,为检查CENP-A位置提供了新的资源。在多个细胞分裂之后,在同一细胞系列的克隆中映射CENP-A位置到T2T组装中高度相似的CENP-A位置。相比之下,在不同人类细胞系的几个centromeres上表现出丝粒CENP-A上乳束,这证明了CENP-A富集的位置和人类细胞之间的KineTochore re裂位点不同。在整个细胞周期中,通过DNA复制保持了其精确的位置,沉积在G1相中的CENP-A分子。因此,尽管在DNA复制过程中CENP-A稀释,但CENP-A仍将CENP-A精确地重新加载到子丝粒内的相同序列上,从而在人类细胞中保持独特的丝粒身份。