结果:在51例患者中,有25.5%的患有笨重的疾病,而64.7%的患者在RT时患有III/IV期。仅针对所有疾病部位的综合BRT均递送至51%的患者,而29.4%的患者则被全身治疗。中位随访时间为10.3个月(95%CI:7.7-16.4)。在卡尔-T输注后30天时,总体响应率(ORR)为82.4%。中位总生存期(OS)为22.1个月(6.6个未达到),中位无进展生存期(PFS)为7.4个月(5.5-30)。OS/PFS分别为1年的80%(66-99)/78%(64-87),分别为2年的59%(44-71)/54%(40-67)。综合的RT与疾病的所有部位有关,与改善的PFS和OS相关,P≤0.04。此外,ECOG≥2和III/IV期疾病预测OS差(P≤0.02)。疾病大量,IPI≥3和非GCB组织学是疾病的预测因子不良 -
摘要:深层脑显微镜受成像探头尺寸的严重限制,无论是在可实现的分辨率方面,还是在手术可能造成的创伤方面。在这里,我们展示了一段超薄多模光纤(套管)可以取代大脑内部笨重的显微镜物镜。通过创建一个自洽的深度神经网络,该神经网络经过训练可以从套管传输的原始信号中重建以人为中心的图像,我们展示了单细胞分辨率(< 10 µ m)、深度切片分辨率 40 µ m 和视野 200 µ m,所有这些都使用绿色荧光蛋白标记的神经元在距离大脑表面 1.4 毫米的深度处进行成像。由于在体内很难获得这些深度的真实图像,我们提出了一种新颖的集成方法,该方法对来自不同深度神经网络架构的重建图像进行平均。最后,我们展示了移动的 GCaMp 标记的 C . elegans 蠕虫的动态成像。我们的方法大大简化了深部脑显微镜检查。
冷大气压等离子体 (CAPP) 已成为一种多功能工具,应用范围从材料加工到等离子体医学 [1]。近年来,针对大气压冷等离子体装置的研究出现了显著增长 [2, 3]。这些装置的优点是无需使用昂贵且笨重的真空设备 [4]。此外,由于其气体温度低且产生的活性物质,这种类型的等离子体源具有从工业到生物学等各种应用 [5,6]。大气压冷等离子体蚀刻已在各个行业中得到广泛应用。在微电子领域,它用于半导体材料的精确和高分辨率蚀刻,从而能够生产更小、更高效的电子设备。在汽车工业中,它在改善粘合剂粘合和表面处理、提高部件的耐用性和性能方面发挥着作用 [7,8]。医疗领域受益于其对医疗器械进行消毒的能力,确保了患者的安全 [9]。在包装领域,它有助于表面活化,从而提高油墨和涂层的附着力。此外,它的环保特性符合可持续发展目标,使得大气压冷等离子蚀刻成为现代工业过程中越来越有价值的工具。
1个高风险因素包括鱼类/多态性组织学,TP53突变或FISH的DEL17P,复杂的核型,MYC呈阳性,鱼类阳性,笨重的肿瘤> 5 cm> 5 cm> 20 cm> 20 cm,KI-67≥30%≥30%的组织活检2 GCC应由初级肢体学家发起。如果主要肿瘤科医生不可用,则主要团队/主治医生来开始GCC讨论并通知主要肿瘤学家。患者或临床指示,应告知患者代表的治疗和/或姑息治疗。GCC讨论应如临床上所示,应保持一致,及时和重新评估。应使用预先护理计划(ACP)注释记录GCC讨论。请参阅GCC主页(仅供内部使用)。3有关化学疗法的缩写和方案4参见附录A 4可以将建议的辐射剂量为24 Gy 5 ibrutinib可以代替阿卡劳略替尼或Zanubrutinib或Zanubrutinib(对明确的患者进行心脏病学咨询)6考虑没有高风险因素的患者和无淋巴瘤症状的观察结果。
脑电波已被证明在整个个体中都足够独特,可以用作生物识别技术。他们还提供了与传统身份验证手段的优势,例如抵抗外部可观察性,可竞争性和内在的易感检测。但是,到目前为止,大多数研究都是用昂贵,笨重的医学级头盔进行的,这些头盔可用于日常使用。旨在将脑电波身份验证及其收益更接近现实世界的部署,我们使用消费者设备调查了大脑生物识别技术。我们进行了一项全面的体验,该实验比较了用户样本的五个身份验证任务,最大的五倍比以前的研究大10倍,并基于认知语义处理的三种新技术。我们分析了不同选项的性能和可用性,并使用此证据来引起设计和研究建议。我们的结果表明,基于对当前廉价技术的图像的响应,可以实现相等的错误率14.5%(相对于现有方法的37%-44%降低)。关于采用,用户要求更简单的设备,更快的身份验证和更好的隐私。
摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
Terahertz极化成像,不仅能够捕获强度曲线,而且能够捕获事件模式的极化状态,是一种具有前途应用的技术,例如安全扫描和医疗诊断。最近,已经提出了一种新的Terahertz成像方法,该方法使用将Terahertz光转换为温度曲线的元图吸收器。然而,由于元图的各向同性几何形状,极化在成像过程中仍然无法区分。为了解决这个问题,这项研究介绍了全丝,极化敏感的跨表面吸收器,并展示了其对Terahertz极化成像的适用性。光学和热模拟证实我们的跨表面的极化依赖性被转化为热域,从而使我们能够区分传入图像中的强度和极化状态。此外,我们证明了一般的椭圆极化下的极化成像是可以实现的。此跨表面有助于Terahertz极化成像,消除了对复杂的设置或笨重的组件的需求,从而减少了形状尺寸并实现了广泛的使用。
抽象的薄膜材料可以获得显着的优势,并且与笨重的对应物相比,具有根本不同和可调的材料特性。结合了超薄二维(2D)和常规半导体材料的特性,可以开发新的设备概念,尤其是用于传感应用。这种关联描述了如何合并常规的半导体和2D物质处理平台和技术。结合了材料特性的精确调整,合并技术可以实现高度非线性的光子传感器和系统,这些传感器和系统可利用特定于材料的益处为广泛的应用范围。除了为设备和系统开发提供几乎独立的构建块外,技术还可以进一步合并,还可以利用常规测量表征来提取材料属性。作为设备示例,用于增强感应应用的异质结构光电视,非线性无定形硅和用于光学范围的光电烯光电镜以及3D成像以及用于增强的读出电路电路的增强式读取电路和薄膜磁带,并与The Storate-enter-ens-ens-ext-exter-the-Art一起进行了讨论。
数字化变电站的定义特征是过程总线的实现。IEC 61850 过程总线能够通过安全、标准化的光纤通信总线取代 IED、其他设备(例如仪器变压器、气体监测、MotorDrive™ 等)和开关设备之间的点对点铜连接。得益于过程总线,实时测量信号和状态信息可以在整个变电站内广播,而无需复杂的布线方案。20 世纪 90 年代末,ABB 在澳大利亚为昆士兰州的输电服务提供商 Powerlink 委托建造了世界上第一个数字化变电站。尽管这一概念自那时以来一直在演变,但基本原理保持不变;用小型集成传感器取代笨重的电流和电压传感器,用光纤通信总线取代信号铜线。从 2008 年起,ABB 在非常规仪器变压器和保护及控制设备之间引入了 IEC61850-9-2 过程总线。数字化变电站使电力公司能够提高生产率、减少占地面积、增加功能、提高资产可靠性,并且至关重要的是,提高服务人员的安全性。数字化变电站利用数字保护、控制和通信技术的优势,反映了许多其他行业的数字化趋势。
第 1 章 安全 A. 一般规定 实验室的安全是所有在场人员的责任和关注点。不安全的做法和事故会危及学员和教员的安全。最好的安全预防措施是保持头脑清醒和关注正在完成的工作。始终遵循以下一般安全做法: 1. 始终严格遵循本手册中概述的程序,除非教员另有指示。偏离规定的程序,即使看起来微不足道,也可能导致严重事故。例如,氰化钾在酸性溶液中会释放有毒气体氰化氢,但在碱性溶液中使用是安全的。 2. 如果发生事故,请立即通知您的教员或让其他人通知他或她。 3. 根据化学卫生计划,您在离开实验室前必须洗手。您将在实验室中处理各种化学试剂,其中许多可能通过接触皮肤或意外摄入对您造成伤害。处理试剂时请经常洗手;只要您怀疑自己可能接触了化学品,请随时洗手。 4. 保护您的眼睛和皮肤。在实验室时,您必须全程佩戴护目镜,以防止眼睛受伤(图 1-1)。适当穿戴实验室围裙/外套可保护皮肤。此外,必须始终穿长裤。对于暂时身体有限制而需要穿短裤(例如笨重的裤子)的学员,我们可提供外裤