摘要:本研究研究了使用Bernardi方程来研究所考虑的电力等效电路模型(ECM)参数依赖性和架构对预测的热产生速率的影响。为此,从细胞表征测试到细胞参数识别和最终验证研究的整个工作流程,都在用镍锰钴化学的圆柱形5 AH LG217000 lg217000 lg217000 lg217000锂离子杆(LIB)上检查。此外,将不同的测试程序在其结果质量方面进行比较。对于参数识别,开发了一个MATLAB工具,使用户能够在一次运行中生成所有必要的ECMS。通过比较不同电荷状态(SOCS)和环境温度的高度动态世界的轻型车辆测试周期(WLTC)的实验结果和模拟结果的电压预测来评估开发的ECM的准确性。结果表明,如果仅比较电压结果,则可以忽略滞后和电流等参数依赖性。考虑到热量产生预测,疏忽可能导致高达9%(电流)或22%(滞后)的错误预测,因此不应忽略。结论电压和热量产生结果,本研究建议使用双极化(DP)或Thevenin ECM考虑所有参数依赖性,除了充电/放电电流依赖性液体的热模型。
网络求解和等效电路 瞬态响应 MOSFET 逆变电路 CMOS 逻辑电路 CMOS 瞬态分析 BJT 电路 晶体管 - 晶体管逻辑 运算放大器 非线性运算放大器电路 频率响应
在不同类型的电池中,锂离子电池因其性能和安全特性而成为最受欢迎的类型。需要电池管理系统来从这种电池中获得便捷的性能并尽可能延长电池的使用寿命。因此,良好的电池管理系统需要一个准确的电池模型。在本研究中,以代表开路电压变化的新一代汽车合作伙伴 (PNGV) 等效电路电池模型为基础,并基于 PNGV 等效电路电池模型创建分数阶电池模型。创建电池模型后,最重要的主题之一是模型参数的确定。在此阶段,为了简化问题,使用分层方法将测量的电池数据集划分为子层,并通过对每个子层进行分析和数据提取来确定参数,以反映不同的充电状态水平。这种方法有助于获得准确的电池模型,在每个电流脉冲期间,稳态误差小于 5 mV,瞬态误差小于 30 mV。
摘要随着储能技术的快速开发,显着地评估了锂离子电池的运行状态,以确保其安全的操作并减少事故的可能性。对于现有模型的长期模拟时间和较低精度的问题,本文提出了一种基于数字双胞胎的热电耦合模型的锂离子电池的施工方法。首先,提出了锂离子电池的数字双结构系统。第二,考虑到热力学模型和等效电路模型的耦合效应,热电耦合模型是基于数字双平台ANSYS TWINBUILDER构建的。按顺序减少热力学模型,并将模拟时间缩短为SEC-OND级别,从而提高了模拟效率并满足数字双胞胎的实时仿真要求。此外,考虑到锂离子电池的操作插入物是可变的,因此,基于可变的遗忘因子递归最小二乘最小二乘算法的在线识别等效电路模型的参数。它更新模型的参数并提高了仿真精度。最后,通过模拟分析验证了模型的效率和准确性。
图3 - (a)具有等效电路(EC)的BCWN样品的示意图。电阻(b),晶体大小(C)和卢比的值之间的相关性。EC -FILM电容(D)和孔电阻(E)的外部要素与预计的空腔边界长度之间的相关性,由SEM估计。相关性,由SEM估计。
简介 ................................................................................................................ 2 – 7 设计说明 .............................................................................................................. 2 – 7 材料和工艺要求 .............................................................................................................. 2 – 9 传导原理 .............................................................................................................. 2 – 11 振膜和空气刚度 ...................................................................................................... 2 – 15 静压均衡 ............................................................................................................. 2 – 16 低频响应和通风口位置 ............................................................................................. 2 – 17 高频响应 ............................................................................................................. 2 – 20 麦克风灵敏度 ............................................................................................................. 2 – 24 通过等效电路进行麦克风建模 ............................................................................. 2 – 25 振膜系统的声阻抗 ............................................................................................. 2 – 27 振膜系统的等效体积 ............................................................................................. 2 – 28
摘要:随着航空中的发展技术,向更多电气系统的过渡日益增加。因此,对电池开发的研究加速了。如今,由于其能量重量比,锂离子(锂离子)电池更为广泛,例如与其他电池技术相比,不工作时的自我释放率较低。电池将储存的化学能转换为电能,并且由于化学反应而释放了热量。释放的热量会对电池的寿命产生负面影响,充电/放电时间和电池输出电压。必须正确建模电池以查看这些负面影响并及时干预。以这种方式,电池中可能发生的负面情况可以在正确的时间进行干预,而不会发生任何事件。在这项研究中,无人机(UAV)由锂离子电池提供动力。使用电气等效电路在MATLAB/SIMULINK环境中进行模拟。考虑到温度,充电状态(SOC),细胞动力学和操作功能,创建了一个详细的模型。要估计电池的健康状态(SOH),必须知道电阻值。借助仿真模型获得了锂离子电池等效电路中的电阻和容量值。因此,可以通过获得的结果准确预测锂离子电池的SOH。关键词:锂离子,无人机,电池模型,仿真。
目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
图 1. 离子选择性固态有机电化学晶体管。 (a) ExG-SSOECT 的结构示意图和等效电路,以及半导体聚合物 PEDOT:PSS、离子液体 [MTEOA][MeOSO 3 ] 和 Na + 、K + 、Ca 2+ 离子选择膜的化学结构。 (b) 输出特性。 (c) 传输特性。 (d) 在恒定 V DS = -0.5 V 下进行的瞬态响应保持测试,脉冲 V GS = -0.4 – 0.8 V 最多 5000 次循环。 (e) 上升时间为 51.4 µs 的瞬态响应。 (f) 在 V DS = -0.1 V 时使用电流脉冲法进行迁移率估计。