认识到在大规模分布计算中对弹性的需求日益增长的需求,ICL在2000年代初引入了容忍度的MPI(FT-MPI),集成了优雅处理过程失败并增强应用程序可靠性的机制。随着HPC体系结构变得更加复杂,ICL开发了Parsec(2012),这是一个基于任务的运行时框架,可以高效地执行分布式和异构体系结构。PARSEC优化资源利用率,动态适应现代计算平台,并已成为Exascale计算的基本工具。它的影响已得到广泛认可 - 在过去的三年中,它在三个戈登·贝尔奖决赛选手项目中发挥了关键作用,最终在2024年在SC24赢得了历史性的胜利。ICL继续完善和扩展Parsec的能力,确保以创新,高性能的解决方案满足未来分布式计算挑战。
,如果燃料生产商可以证明与ICAO文件中提供的默认生命周期值相比,如果燃料生产商可以证明“ Corsia默认生命周期的默认生命周期排放值”,那么如果燃料生产商的默认生命周期值与燃料生产商的生命未定义,则可以使用“ Corsia默认生命周期的排放价值”,或者在定义的生命周期中,如果燃料生命周期为“ CORSIA默认生命周期的排放值”,则可以使用实际的生命周期价值来证明“ CORSIA违约生命周期的价值”,或者在定义的一定的生命周期中, 可以使用实际的生命周期价值作为接受燃料可持续性认证过程的一部分。 如果飞机操作员选择使用实际的生命周期价值,则飞机操作员将从ICAO文件中选择符合条件的可持续性认证计划,标题为“ CORSIA批准的可持续性认证计划”,以确保该文档中定义的LCA方法符合分析。 SCS将确保正确应用该方法,并通过监护链传输有关温室气体排放的相关信息。 SCS将记录有关其系统中实际值计算的详细信息,并根据要求提供此信息。 最终L CEF结果的功能单元将以较低的加热值(GCO 2 E/MJ)的形式在飞机发动机中产生和燃烧的燃料和燃烧的CO 2 e。可以使用实际的生命周期价值作为接受燃料可持续性认证过程的一部分。 如果飞机操作员选择使用实际的生命周期价值,则飞机操作员将从ICAO文件中选择符合条件的可持续性认证计划,标题为“ CORSIA批准的可持续性认证计划”,以确保该文档中定义的LCA方法符合分析。 SCS将确保正确应用该方法,并通过监护链传输有关温室气体排放的相关信息。 SCS将记录有关其系统中实际值计算的详细信息,并根据要求提供此信息。 最终L CEF结果的功能单元将以较低的加热值(GCO 2 E/MJ)的形式在飞机发动机中产生和燃烧的燃料和燃烧的CO 2 e。可以使用实际的生命周期价值作为接受燃料可持续性认证过程的一部分。如果飞机操作员选择使用实际的生命周期价值,则飞机操作员将从ICAO文件中选择符合条件的可持续性认证计划,标题为“ CORSIA批准的可持续性认证计划”,以确保该文档中定义的LCA方法符合分析。SCS将确保正确应用该方法,并通过监护链传输有关温室气体排放的相关信息。SCS将记录有关其系统中实际值计算的详细信息,并根据要求提供此信息。最终L CEF结果的功能单元将以较低的加热值(GCO 2 E/MJ)的形式在飞机发动机中产生和燃烧的燃料和燃烧的CO 2 e。
人类的智力躁动源于对现代世界知识的需求。金融界正在努力以低风险的方式对准确、快速的数据进行原型设计。量子金融方法可以满足这种愿望。本文的目的是全面回顾关于量子计算如何应用于金融的文献。这项研究旨在揭示量子金融领域的最新架构。在方法论方面,PSALSAR 框架用于进行系统的文献综述。选择程序遵循 PRISMA 指南,并应用于两个数据库(Web of Science 和 Scopus),没有时间限制。总共有 1646 篇文章中的 94 篇被纳入数据提取和内容评估,涵盖 2001 年至 2023 年期间。当前对量子金融文献的回顾围绕以下主题展开:期刊、研究方法、测试数据系列、量子金融研究主题和未来研究方向。在金融领域,量子计算主要用于三个领域:模拟、优化和机器学习。这些领域得到了近年来创建的算法的支持。最后,我们建议强调量子金融的好处和应用,并激发人们对辩论未来前景的兴趣。
我们提出了一种新方法,借助量子干涉显著提高基于量子比特的暗物质探测实验中的信号速率。各种量子传感器都具有探测波状暗物质的理想特性,而量子计算机中常用的量子比特是暗物质探测器的绝佳候选。我们证明,通过设计适当的量子电路来操纵量子比特,信号速率与 n 2 q 成比例,其中 nq 是传感器量子比特的数量,而不是与 nq 成线性关系。因此,在使用大量传感器量子比特的暗物质探测中,可以预期信号速率会显著增加。我们提供了一个量子电路的具体示例,该电路通过连贯地组合每个单独量子比特由于其与暗物质相互作用而产生的相位演变来实现这种增强。我们还证明该电路对失相噪声具有容错能力,失相噪声是量子计算机中的关键量子噪声源。这里提出的增强机制适用于各种量子计算机模式,只要与增强暗物质信号相关的量子操作可以应用于这些设备。
我们的经济增长目标是使开普敦成为开展业务和创造就业机会的最简单地方。我们努力的核心是对卓越服务和创新的承诺。我发起了“我的意思是商业思想挑战”;这项开创性的倡议旨在推动创新并提高易于企业框架的效率。照顾我们的居民是一项重要的承诺,因此,我们有一个开普敦市的员工承诺和商业服务宪章,该宪章鼓励我们的员工拥抱并自我了解当地政府的行为守则和城市的道德准则。
• 探索与非传统资金来源的合作,包括针对每个相关 MDA 的私人和创新混合资金方案。 • 在规划和提案阶段,让相关国家合作伙伴参与国际资助项目的设计和预算分配。 • 在国家预算周期内为 NCA 活动分配支持,以符合联合国可持续发展目标 (SDG)、昆明-蒙特利尔全球生物多样性框架、国家自主贡献 (NDC) 以及加纳国家生物多样性战略和行动计划 (NBSAP)、国家中期战略和长期国家发展计划中定义的目标。 • 与财政部合作,确保及时拨付资金,防止各级实施延误。
值得信赖的人工智能 (AI) 是边缘计算的关键问题。边缘计算涉及在网络边缘(靠近数据生成位置)处理数据,而不是将其发送到集中位置 [1]。这种方法可以提供更快、更高效的数据处理,但它也要求 AI 系统在远程环境中自主可靠地运行。因此,边缘计算中的 AI 系统值得信赖非常重要,这意味着它们是透明、安全和准确的 [2]。更详细地说,理想情况下,值得信赖的 AI 可以从网络中的任何点透明、安全、准确地部署。从根本上讲,这些要求转化为提供对传输中数据和处理中数据的保护,同时确保低延迟和可访问性。接下来,我们将描述如何应对这些技术挑战。
我们所说的可计算的实体对函数是什么意思:朝着自然定义。按“可计算”一词的含义,一个可计算的价值函数𝑓(𝑥1,。。。,𝑥实值输入的,𝑥)是一个函数,可以根据输入来计算其值。 此类功能用于处理数据𝑥1,。 。 。 ,𝑥𝑘。 该数据处理的目标是估计与数量𝑥1,。 。 。 ,thy公式𝑦=𝑓(𝑥1,。) 。 。 ,𝑥)。 例如,我们希望根据当前值𝑥1,。 。 。 ,在此和附近的不同气象量的不同。 但是,在理想的世界中,数据是相应物理量的实际值。 我们学习值的方式是通过测量:通过直接测量或处理适当的辅助测量结果。 因此,重要的是要考虑到测量量永远不会绝对准确,它们始终具有一定的准确性 - 通常由相应二进制表示中的数字数𝑚描述,以便准确性为2 -𝑚。 换句话说,而不是知道实际值𝑎1,。 。 。 ,相应数量的𝑎,我们只知道测量结果𝑥1,。 。 。 。 。 。 。,𝑥)是一个函数,可以根据输入来计算其值。此类功能用于处理数据𝑥1,。。。,𝑥𝑘。该数据处理的目标是估计与数量𝑥1,。。。,thy公式𝑦=𝑓(𝑥1,。。。,𝑥)。例如,我们希望根据当前值𝑥1,。。。,在此和附近的不同气象量的不同。但是,在理想的世界中,数据是相应物理量的实际值。我们学习值的方式是通过测量:通过直接测量或处理适当的辅助测量结果。因此,重要的是要考虑到测量量永远不会绝对准确,它们始终具有一定的准确性 - 通常由相应二进制表示中的数字数𝑚描述,以便准确性为2 -𝑚。换句话说,而不是知道实际值𝑎1,。。。,相应数量的𝑎,我们只知道测量结果𝑥1,。。。。。。。,the the是2 −𝑚- close到这些值,即| 𝑥 -𝑎 -𝑎|从1到𝑘≤2−𝑚。由于已知值𝑥𝑖仅是对实际值𝑎𝑎的近似值,因此结果𝑓(𝑥1,。,数据处理的,仅是所需理想值𝑓的近似值(𝑎1,。 ,𝑎)。 我们要确保结果𝑦=𝑓(𝑥1,。 。 。 ,数据处理的,接近所需的(理想)值𝑏=𝑓(𝑎1,。 。 。 ,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。 实际上,我们希望以一些给定的精度进行估计。 例如,对于温度,精度为几个度。 可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。 在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们,仅是所需理想值𝑓的近似值(𝑎1,。,𝑎)。我们要确保结果𝑦=𝑓(𝑥1,。。。,数据处理的,接近所需的(理想)值𝑏=𝑓(𝑎1,。 。 。 ,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。 实际上,我们希望以一些给定的精度进行估计。 例如,对于温度,精度为几个度。 可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。 在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们,接近所需的(理想)值𝑏=𝑓(𝑎1,。。。,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。实际上,我们希望以一些给定的精度进行估计。例如,对于温度,精度为几个度。可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们
2 独立研究员,尼日利亚 3 美国印第安纳卫斯理大学 _______________________________________________________________________________ *通讯作者:Temidayo Olorunsogo 通讯作者电子邮箱:temi.olorunsogo@colorado.edu 文章收稿日期:10-01-24 接受日期:01-03-24 发表日期:22-03-24 许可详情:作者保留本文的权利。本文根据知识共享署名-非商业性使用 4.0 许可证条款发布(http://www.creativecommons.org/licences/by-nc/4.0/),允许非商业性使用、复制和分发作品,无需进一步许可,但需注明原始作品的归属,如期刊开放获取页面上所指定 _______________________________________________________________________________