数据分析和人工智能中的大数据和技术进步的可用性导致越来越多的公司将算法定价纳入其业务中,以帮助做出定价和其他战略决策。定价算法可以通过允许公司在做出业务决策时实时分析众多变量和大量数据,从而改善竞争,最大化效率并最大程度地降低成本。但是,美国政府反托拉斯的执行者和私人原告越来越关注算法定价软件可以对竞争产生的影响,并指控在某些情况下,在某些情况下,使用算法的价格可以在竞争中促进竞争或更轻松地派遣挑选的公司或更轻松地派遣挑选的公司或更轻松地与Press的挑战或互动。其中一些论点正在测试美国反托拉斯法律的范围,法院将需要成为这种经常复杂且快速发展的技术合法性的最终仲裁者。同时,考虑将定价算法纳入其业务的公司应了解与之相关的法律风险。
因此,这些仍然是暴风雨的时期,这与新系统技术的出现相处。一年前,观察到荷兰必须采取措施才能掌握算法。同时,AI技术的动荡增长仍在继续。此外,生成AI的出现为通过新的AI应用程序进行了大规模实验提供了激励措施。在未来几年中,AI将与社会要素越来越深深地交织在一起。这是在规模和自然方面的结果,在更多和更新的风险中仍然难以评估。其长期影响也尚未完全理解。总的来说,到目前为止,国际政策响应已经决定性。它既关注传统的监督,又关注新的测试和控制形式,例如AI系统的安全性以及打击新的网络安全风险。同时
我们引入了一种新算法,称为 PPA(性能预测算法),该算法可以定量测量神经系统元素对其执行任务的贡献。根据一小组病变中性能下降的数据,该算法可以识别参与认知或行为任务的神经元或区域。它还可以准确预测由于多元素病变导致的性能。新算法的有效性在两个具有元素间复杂相互作用的循环神经网络模型中得到了证明。该算法可扩展并适用于大型神经网络的分析。鉴于可逆失活技术的最新进展,它有可能对理解生物神经系统的组织做出重大贡献,并阐明关于大脑局部计算与分布式计算的长期争论。
数据是AI系统的骨干。算法治理的很大一部分是关于通过算法对数据进行透明和可解释的处理,直到最近才成为数据监管机构和公民的黑匣子。数据主权要求公民知道是否以及如何在AI系统中使用其数据。算法的透明度是道德和仅具有足够透明度的数据实践的一个方面。 GPAI数据治理工作组一直在研究工具,以提高透明度,并在公共部门部署AI技术。算法的透明度是道德和仅具有足够透明度的数据实践的一个方面。GPAI数据治理工作组一直在研究工具,以提高透明度,并在公共部门部署AI技术。
结果,他们必须能够获得高效、优质和有效的服务。不幸的是,由于皮肤科医生短缺问题日益严重,北美大多数患者的情况并非如此,平均等待专业医生的时间超过两个月。因此,越来越多的医疗专业人员提供皮肤科服务,以满足这种快速增长的需求。识别皮肤病变的性质在很大程度上依赖于护理提供者的专业知识。然而,由于皮肤图像分析和分类的复杂性,这个过程通常对即使是最有经验的专家来说也很有挑战性,因此会产生大量不必要的活检标本。患者接受侵入性手术的经济负担和身体创伤,再加上皮肤癌病例的低假阳性率,使得有必要采用新一代工具来支持准确的、基于证据的临床决策。人工智能如何支持这一日益增长的需求?利用技术的力量代表着对色素性皮肤病变的分析和诊断有了巨大的进步。人工智能 (AI) 技术有能力彻底改变医疗专业人员为患者提供最佳医疗结果的方式。机器学习能力成为战略技术盟友,可根据对数百万先前分类的病例的累积分析提供高度准确的决策支持。旨在与该领域的主要利益相关者密切合作的全球举措更好地展示了 AI 在皮肤病学中的实施潜力。可以通过该领域不同研究领导者的累积参与来研究和促进 AI 算法的力量和特异性,就像 ISIC 图像分类挑战赛所鼓励的那样。
受气候缓解目标国家的驱动国家,全球大流行后的经济增长和恢复的低成本可再生能源的优先级。很明显,可疑的技术选择会导致更广泛的社会经济利益,这是在将其能源部门朝着更高份额的可再生能源份额过渡到更高份额的国家中所表明的。对更好地理解能源过渡对就业的直接影响的兴趣越来越大,对传统能源部门失去的工作的担忧将对世界各地的决策介绍至关重要。这项研究重点是加速可再生能源的净就业影响,该净摄入量将于2050年到2050年从可再生能源中获得100%的能源,与巴黎协议的雄心勃勃的目标兼容。与电力,热量,运输和脱盐部门相关的直接能源工作从2020年的约5700万增加到到2050年的近1.34亿。可再生能源和可持续技术中的价值链比采摘化石燃料更重要。结果表明,全球能源过渡将对世界各地经济的未来稳定和增长产生积极影响。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
我们提出了一种使用多体分离式化催化的方法来加快量子绝热算法的方法。这将应用于随机场抗铁磁液体自旋模型。该算法的催化方式使得进化在过程中间近似于海森堡模型,并且该模型处于离域相。我们以数字方式显示,我们可以加快标准算法来使用此想法来查找随机模型的基础状态。我们还证明了加速是由于差距扩增而引起的,即使基础模型并非没有挫败感。分频器到加速度大致出现在相互作用的值中,这被称为离域转变的关键。我们还将参与率和纠缠熵计算为时间的函数:他们的时间依赖关系表明该系统正在探索更多的状态,并且比没有催化剂时更纠缠。一起,所有这些证据都表明加速与离域有关。即使只能研究相对较小的系统,但证据表明,该方法的缩放尺寸是有利的。通过一台小型在线IBM量子计算机的实验结果来说明我们的方法,显示了如何随着这些机器的改善来验证该方法。与标准算法相比,催化方法的成本只是一个恒定因素。
在过去的几十年里,航天/航空航天飞行器的先进制导与控制 (G&C) 系统的设计受到了全世界的广泛关注,并将继续成为航空航天工业的主要关注点。毫不奇怪,由于存在各种模型不确定性和环境干扰,基于鲁棒和随机控制的方法在 G&C 系统设计中发挥了关键作用,并且已经成功构建了许多有效的算法来制导和操纵航天/航空航天飞行器的运动。除了这些面向稳定性理论的技术外,近年来,我们还看到一种日益增长的趋势,即设计基于优化理论和人工智能 (AI) 的航天/航空航天飞行器控制器,以满足对更好系统性能日益增长的需求。相关研究表明,这些新开发的策略可以从应用的角度带来许多好处,它们可以被视为驱动机载决策系统。本文系统地介绍了能够为航天/航空航天飞行器生成可靠制导和控制命令的最先进的算法。本文首先简要概述了航天/航空航天飞行器的制导和控制问题。随后,讨论了有关基于稳定性理论的 G&C 方法的大量学术著作。回顾并讨论了这些方法中固有的一些潜在问题和挑战。然后,概述了各种最近开发的基于优化理论的方法,这些方法能够产生最佳制导和控制命令,包括基于动态规划的方法、基于模型预测控制的方法和其他增强版本。还讨论了应用这些方法的关键方面,例如它们的主要优势和固有挑战。随后,特别关注最近探索 AI 技术在飞行器系统最佳控制方面的可能用途的尝试。讨论的重点说明了航天/航空航天飞行器控制问题如何从这些 AI 模型中受益。最后,总结了一些实际实施考虑因素以及一些未来的研究主题。
名称:Cormen,Thomas H.,作者。J Leisserson,Charles Eric,作者。 J Rivest,Ronald L.,作者。 J Stein,Clifford,作者。 标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。 描述:第四版。 J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。 distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。 J计算机算法。 classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260 上获得J Leisserson,Charles Eric,作者。J Rivest,Ronald L.,作者。 J Stein,Clifford,作者。 标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。 描述:第四版。 J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。 distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。 J计算机算法。 classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260 上获得J Rivest,Ronald L.,作者。J Stein,Clifford,作者。标题:算法概论 / Thomas H. Cormen,Charles E. Leisoserson,Ronald L. Rivest,Clifford Stein。描述:第四版。J剑桥,马萨诸塞州:麻省理工学院出版社,[2022] J包括书目参考和索引。distentuers:LCCN 2021037260 J ISBN 9780262046305主题:LCSH:计算机编程。J计算机算法。classiûcation:LCC QA76.6 .C662 2022 J DDC 005.13--DC23 LC记录可在http://lccn.loc.gov/2021037260
摘要:遗传算法(GA)比其他方法(例如梯度下降或随机搜索)更有用,尤其是对于具有许多局部最小值和Maxima的非不同的函数,例如梯度下降或随机搜索。标准GA方法的缺点之一是需要设置许多超参数,并且基于复杂规则而不是更直观的模糊规则,选择压力是基于复杂的规则。通过模糊逻辑调整此类参数的遗传算法的变体,以使参数更新原理更容易解释,构成模糊遗传算法(FGAS)的类别。本文提出了对具有N个特性和自动生成规则的两个相对模糊遗传算法(FGA)的修改,以及旨在改善模拟运行时的计算优化。在基准功能(Ackley,Griewank,Rastrigin和Schwefel)上评估了修改,并且选择了每个修改方法的最佳设置(即成员资格功能,术语数,T-norm和t-conorm)。将结果与标准GA和粒子群优化(PSO)进行了比较。结果表明,FGA方法可以使用缓存和最近的邻居方法进行优化,而不会失去准确性和收敛性。证明这两种修改后的方法在统计学上的表现明显比基线方法差。结果,我们提出了对现有两种算法的两种优化:通过缓存和测试其性能,通过规则生成和最近的邻居估算进行外推。