我们报告了金纳米粒子 (AuNP) 修饰的石墨烯-硅肖特基势垒二极管的电流-电压特性和低频噪声的结果。测量在环境空气中添加两种有机蒸气四氢呋喃 [(CH 2 ) 4 O; THF] 和氯仿 (CHCl 3 ) 中的任一种进行,以及在黄光照射 (592 nm) 期间进行,接近测量的金纳米粒子层的粒子等离子体极化频率。当加入四氢呋喃蒸气时(在金修饰的石墨烯-硅肖特基二极管中),我们观察到正向电压 (正向电阻区域) 的直流特性发生变化,而当添加氯仿时(在未修饰的石墨烯-硅肖特基二极管中),在黄光照射下会发生微小的变化。与无照射相比,在黄光照射期间观察到两种气体的低频噪声差异明显较大。与没有 AuNP 层的石墨烯-Si 肖特基二极管相比,AuNP 抑制了噪声强度。我们得出结论,所研究的金装饰肖特基二极管产生的闪烁噪声可用于气体检测。
百合会有限公司(在接收方面)(“公司”)接收者的第一个报告免责声明此报告是根据1993年《接收法》第23条准备的,仅旨在报告公司事务声明和接管人的行为。本报告基于报告日期在接收方可用的信息。我们对从公司,其官员或任何其他人获得的报告中包含的任何错误信息承担责任。未经接收者事先同意和接收者,他的公司及其雇员不承担任何当事方对任何损失或因对本报告的使用或依赖而造成的损失或损害造成的损失或损害的责任。
披露伊丽莎白·史密斯(Elizabeth Smyth)从Amgen,Astellas,Astellazeneca,Beigene,Bristol Myers Squibb,Daiichi Sankyo,Daiichi Sankyo,Merck,Mirati,Novarti,Pfizer,T-Cypher Bio Bio,Viracta和Zymworks和Zymeyworks以及Zymeyworks外面的工作;以及阿斯利康(Astrazeneca)和布里斯托尔·迈尔斯(Bristol Myers Squibb)的赠款。她是欧洲胃肠道试验小组研究和治疗组织(2024-2027)的主席,也是英国和爱尔兰食管胃癌组的受托人。她得到了牛津大学国家健康与护理研究所生物医学研究中心的支持。
本文描述了移动纳米版之间的Terahertz通用联系的时间变化性质,针对人类血管内的纳米电视通信的现实用例。我们考虑通过类似偶极的纳米antennas的通信链接,该连接在血液中流动并旋转。这样的动态场景在接收到的功率水平上导致随机故障,类似于褪色的通道。我们提出了时间变化脉冲响应的分析公式,并计算出诸如水平交叉率和平均淡出持续时间之类的性能指标。我们的发现揭示了毫秒级的交叉点,平均量表的平均持续时间在相同的尺度上。我们的研究是签署强大的解码器和错误校正代码的基础,以减轻可变性对接收功率水平的影响。
版权所有 © 2023 美国国家护理委员会。由 Elsevier Inc. 出版。保留所有权利。此手稿版本根据 CC-BY-NC-ND 4.0 许可证提供 https://creativecommons.org/licenses/by-nc-nd/4.0/(请参阅:https://www.elsevier.com/about/policies/sharing)。
过量卤化铵作为成分添加剂被广泛用于钙钛矿发光二极管 (PeLED),旨在通过控制晶体度和钝化缺陷来实现高性能。然而,对于过量有机铵成分是否会影响薄膜的物理/电学性质以及由此导致的器件不稳定性,我们仍然缺乏深入了解。本文指出了在具有过量卤化铵的高效甲脒铅碘化物 (FAPbI 3 ) 基 PeLED 中性能和稳定性之间的权衡,并探索了其潜在机制。系统的实验和理论研究表明,过量卤化盐诱导的离子掺杂极大地改变了 PeLED 的性质(例如,载流子注入、场相关离子漂移、缺陷物理和相稳定性)。证明了表面清洁辅助交联策略可以消除成分调制的不利影响并在不牺牲效率的情况下提高操作稳定性,同时实现 23.6% 的高效率、964 W sr − 1 m − 2 的高辐射度(基于 FAPbI 3 的 PeLED 的最高值)和 106.1 小时的长寿命在大直流密度(100 mA cm − 2)下。研究结果揭示了过量卤化物盐与器件性能之间的重要联系,为合理设计稳定、明亮、高效的 PeLED 提供了指导。
摘要:跨学科(例如医疗保健,汽车,取证和天文学)的高光谱成像的应用受到复杂的过滤器和分散透镜的要求。通过利用具有工程光谱响应和高级信号处理技术的设备,可以使光谱成像过程在各个领域更容易接近。我们提出了一种使用光子捕获表面纹理(PTST)的光谱响应设计方法,该方法消除了外部衍射光学元件的必要性,并促进了系统的微型化。我们已经开发了一个分析模型,以在PTST存在下使用硅的有效折射率来计算电磁波耦合。我们已广泛验证了模拟和实验数据的模型,以确保我们的预测准确性。我们观察到峰耦合波长与PTST周期之间存在强烈的线性关系,以及与PTST直径的中等比例关系。此外,我们确定了跨间距与波传播模式之间的显着相关性。模型的实验验证是使用配备PTST的光电二极管通过互补的金属氧化物 - 氧化 - 兼容器兼容的过程进行的。此外,我们演示了这些配备PTST的光二极管的电气和光学性能,以显示高速(响应时间:27 PS),高增益(乘法增益,M:90)和低工作电压(击穿电压:〜8.0 V)。最后,我们利用制造的配备PTST光电二极管的独特响应来模拟高光谱成像,提供原理证明。这些发现对于高性能光谱仪的片上整合,保证实时数据操作以及高光谱成像系统的成本效益的产生至关重要。关键字:雪崩光电二极管,高光谱成像,多光谱成像,光子捕获功能,光谱响应工程■简介
Anna Pirozzoli * 摘要:人工智能等新兴技术的发展引发了关于其风险和收益的科学争论。这场争论需要考虑法律和监管问题,特别是在技术发展与保护人权之间的平衡问题上。本篇洞察分析了欧盟在其初始监管措施中建立的法律框架。本篇洞察强调了在《人工智能法》中考虑以人为本的观点和采用基于风险的方法的重要性。它还提到了成员国提出的人工智能监管措施,特别关注意大利。 关键词:人工智能 – 欧盟政策 – 人工智能法 – 人权 – 欧盟法规 – 技术。
在针对先进半导体的出口管制修补的同时,政策辩论也在不断升温,即是否以及如何应对中国在传统工艺节点(也通常被称为基础、后缘、成熟、关键或主流芯片)上建设半导体产能带来的潜在威胁。2023 年美国商务部《芯片法案》将传统芯片定义为基于 28 纳米或更大工艺节点制造的半导体,不同于前沿半导体,美国在 2022 年出口管制中将前沿半导体定义为基于 16/14 纳米或以下工艺节点制造的逻辑芯片。从高度专业化的 28 纳米微控制器到现成的 350 纳米功率组件,各种芯片都属于传统芯片类别。尖端服务器、图形、笔记本电脑和智能手机处理器依靠极紫外光刻技术,在高度复杂的制造过程中,在 (5 纳米以下) 工艺节点上每平方毫米封装越来越多的晶体管。相比之下,较为低调的传统芯片可以在老一代的DUV光刻设备上制造,对晶圆生产的要求较低。
c生物工程,生物材料和纳米医学(Ciber-BBN)的生物医学研究网络中心,Calle Monforte de Lemos 3-5,马德里,西班牙leo.salgado@csic.es leo.salgado@csic.es基于石墨烯基于求解的溶液基因菲尔德型现场效应晶体管(GSGFET)(GSGFFET)(图。1)在生物医学技术中变得重要。为其应用是对石墨烯 - 电解质界面行为的更好了解[1]。此接口可能会受到几个因素的影响,从而修改最终设备的性能。在第一种方法中,可以将其建模为电容(C INT),该电容与晶体管通道面积成反比[2]。这将其直接观察限制在某些尺寸以下,这主要是由于对连接轨道的寄生作用。在这里,我们已经制造了不同尺寸(50x50,100x100和300x300μm)的独立GSGFET,以测量电化学阻抗光谱谱(EIS),以直接评估界面互动的界面电容,以及通过频率响应的频率效应,通过分析(通过分析频率)进行频率效应(通过分析频率)(通过分析)进行了频率(通过分析)。即使我们期望在频率上具有恒定的电容性行为,EIS结果显示出两个不同的电容响应,由电阻过渡隔开(图2和3)。另外,对于GM结果也观察到了相同的行为,由于这两个不同的耦合能力,即使在较小的GSGFET处,在相同的频率下,有两个不同的收益出现在相同的频率下,在较小的GSGFET下,EIS受寄生效应的限制。最后,在两种方法中,都观察到频率过渡取决于pH(图4),促使以下假设:这种现象可以与GSGFET的SIO 2底物的末端组相互作用。所有这些结果证明,GM频率响应的采用是表征小型制造设备中C INT的有价值工具。使用这种方法获得的数据将非常有用,对于鉴定制造干扰物和改进用于分析GSGFET获得的生物学数据的校准方法。参考文献[1] R. Garcia-Cortadella et al。,Small,16(2020)1906640 [2] E. Masvidal-Codina等人,Nature Mater。,18(2019)280-288个数字