在过去的几十年里,增材制造 (AM) 技术一直被视为传统制造工艺的替代方案 [1, 2]。快速生产各种材料的近净成形产品被认为是促进其大规模应用的主要优势 [3]。此外,只需一台机器即可轻松制造多种复杂形状和部件,而这些部件和部件是单个传统加工操作难以实现的,这也是其卖点 [4e6]。然而,由于 AM 技术现在已考虑在多个领域进行大规模生产,因此我们迅速发现了新的挑战,需要控制和解决这些挑战以适应 AM 的发展速度 [7,8]。薄壁结构、复杂曲面和晶格结构是优先通过 AM 技术生产的主要几何部件 [9,10]。由于材料损失大、尺寸问题、设备限制以及内腔制造(尤其是晶格结构),传统制造程序存在严格的限制 [11, 12]。但另一方面,通过 AM 生产这些组件也存在一些限制和局限性。由于使用高功率热源,通过 AM 通常无法实现高精度和严格遵守公差要求 [13, 14]。此外,基于材料添加的制造概念允许在制造过程中添加残余材料 [15, 16]。另一方面,减材加工程序可产生高质量的产品 [17]。然而,由于几何复杂性,减材加工的几何条件并不总是有利 [18, 19]。因此,这两种程序的结合应用可以创建一个更好的制造策略。在这两种技术的混合方法中,增材制造可以制造出具有近净形状几何和尺寸特征的原始零件[20],而减材加工操作可用于精加工这些原始零件,以达到所需的尺寸精度和表面光洁度[21]。此外,支撑
本书的主题包括大量信息,适合那些需要更多了解薄膜以用于研究目的或希望使用这种特殊形式的固体材料实现各种应用目标的物理学家、化学家和工程师。这本出版物非常特别,因为作者提供了他在 20 多年深入研究薄膜方面获得的丰富理论和实践经验。他关注所有对最终产品有影响的细节,因此可以非常彻底地描述所有玻璃类型基材的特性,还可以处理有关表面物理的非常困难的问题。玻璃可以通过多种方法生产。制造工艺和化学成分决定了特定玻璃对其环境的抵抗力。还有不同的玻璃表面精加工工艺,这与上述两个因素一起决定了表面特性。除了无机玻璃,还考虑了有机玻璃和塑料材料。如今,有两种首选的薄膜生产方法:化学气相沉积和真空物理气相沉积;后者的三大技术是溅射、蒸发和离子镀。这些都进行了详细讨论。作者的丰富经验使他能够在讨论如何使用适当的真空技术产生具有所需残余气体氛围的真空时提供许多宝贵的建议。他还研究了机械和光学薄膜特性以及薄膜厚度测量方法,这些也包含在书中。还提供了允许开发复杂薄膜系统的计算方法的信息。精确的计算和极其准确的测量是计算机控制涂层系统中生产薄膜的基础。薄膜的应用在书中也占有重要地位。作者所在的公司因其薄膜产品而闻名于世。总之,这本书可以说是一本由科学家为科学家和技术人员编写的关于玻璃和薄膜的处方集。它超越了标题所指的主题,填补了迄今为止现有技术文献中存在的空白。
工作日,免费提供健康零食,并举办有关保持财务健康的虚拟研讨会。 2.再生设计 > 可持续性。四家设计公司——Cuningham、HDR、HOK 和 Little——提到,通过再生设计,将他们的团队、客户和项目从“减少伤害”的可持续发展心态转变为“恢复地球”的心态。Cuningham 的再生策略包括内部措施,例如监测碳排放以减少或抵消它们、制定气候行动计划以及致力于正义、公平和多样性。其项目设计策略包括尽可能重复使用建筑基础设施并追求净零性能。3.终于!一些工作与生活的平衡。COVID-19 疫情迫使 AEC 公司认真考虑工作与生活的平衡。近十几家公司提到转向永久混合时间表。其他公司正在扩大其福利待遇,以平衡工作与生活。总部位于匹兹堡的 IKM Architec-ture 去年推出了无限 PTO。该公司还从周一至周五的结构化八小时工作制转变为周日至周六的 40 小时工作制。4.机器人技术超越了试点测试。DPR Construction、HITT Contracting、Swin-erton 和 Turner Construction 都报告了在工地上使用机器人技术的更正式的举措。HITT 正在使用 Boston Dynamics 的 Spot 和 Hilti 的 Jaibot 执行重复性任务,例如钻锚。Swinerton 去年成为第一家拥有经过全面培训的 Dusty Robotics 内部操作员的建筑公司,并且是该供应商的 FieldPrinter 在加利福尼亚州、德克萨斯州和弗吉尼亚州的项目中最早采用者。Turner 正在使用机器人进行干式墙面精加工、执行布局和高架钻孔。
本书的主题包括大量信息,适合那些需要更多了解薄膜以用于研究目的或希望使用这种特殊形式的固体材料实现各种应用目标的物理学家、化学家和工程师。这本出版物之所以如此特别,是因为作者提供了他在 20 多年深入研究薄膜方面获得的丰富理论和实践经验。他关注所有会影响最终产品的细节,因此可以非常彻底地描述所有玻璃类型基材的特性,还可以处理有关表面物理的非常困难的问题。玻璃可以通过多种方法生产。制造工艺和化学成分决定了特定玻璃对其环境的抵抗力。还有不同的玻璃表面精加工工艺,这与上述两个因素一起决定了表面特性。除了无机玻璃外,还考虑了有机玻璃和塑料材料。如今,有两种首选的薄膜生产方法:化学气相沉积和真空物理气相沉积;后者的三大技术是溅射、蒸发和离子镀。这些技术都进行了详细讨论。作者的丰富经验使他能够在讨论如何使用适当的真空技术产生具有所需残余气体氛围的真空时提供许多宝贵的建议。他还研究了机械和光学薄膜特性以及薄膜厚度测量方法,这些也包含在本书中。还提供了有关允许开发复杂薄膜系统的计算方法的信息。精确的计算和极其精确的测量是计算机控制涂层系统中生产薄膜的基础。薄膜的应用也在书中占有重要地位。作者所在的公司以其薄膜产品而闻名于世。总之,这本书可以称为由科学家为科学家和技术人员编写的关于玻璃和薄膜主题的处方集。它超出了标题所指示的主题,填补了迄今为止现有技术文献中存在的空白。
Accudraft 喷漆室 Acme Finishing Co ACT Test Panels LLC Adf 工业涂料 ADF 系统有限公司 Aesthetic Finishers Inc AFC 精加工系统 AkzoNobel 粉末涂料 Alconox Alliance Manufacturing Inc American Fabric Filter Co American Grinders Inc American Industrial Sales LLC Amiberica Inc AMOVA SARL APEL International Argon Masking Corp Assured Testing Services Axalta Coating Systems AZZ Metal Coatings B L Downey Company LLC 宝鸡安迪新金属有限公司 Baril Coatings USA BASF Corp Bayco / Guspro Inc BCI Surface Technologies Bulk Chemicals Inc BEKO Technologies Bex 喷嘴 Blast Cleaning Technologies BlastOne Bonding Solutions Brush Research Manufacturing Co Burleigh Industries Caldan Conveyor A/S Calvary Industries Inc Caplugs Carbit Paint Co Cardinal Paint and Powder Cardinal Parts & Equipment LLC Carlisle Fluid Technologies Castrol Cataforesis SA de CV Catalytic Industrial Systems CFCM Canadian Finishing & Coatings Manufacturing Chemetall US Inc国际化学涂料协会 ChemQuest Inc Chemtec North America LLC 芝加哥涂层技术 Chris Plating ClearClad Coatings LLC Clemco Industries Corp Col-Met Engineered Finishing Solutions 哥伦布工业公司 燃烧与系统公司 Coral Chemical Co CPR Systems 定制制造与供应 Daifuku North America - Jervis B Webb 公司 DeFelsko Corp Delfin Industrial Dinamec Systems Divine Brothers Co DMP Corporation Dosatron International Inc DST Chemicals Inc DuBois Chemicals Inc Durr Systems Inc Ech
过去几年来,该研究所在维持方面付出了巨大努力。由于在扩大疫苗生产规模方面进行了战略性接触,世界银行支持的畜牧业生产力和复原力支持项目 (L-PRES) 正在向该研究所提供支持,以扩大其现有的灌装和精加工生产线,同时努力确保为完成新的疫苗生产设施提供资金。在英国 FCDO 的支持下,NVRI 审查了去年进行的疫苗商业化可行性报告的关键方面。根据 Propcom + 计划,获得了一项气候复原力基础设施开发 (CDEL) 拨款,用于装备 PPR 疫苗生产实验室。这将使 NVRI 能够在未来 12 个月内将 PPR 和 NDV I-2 疫苗的产量提高三倍。在 2023 年取得成功的基础上,继续加强员工能力建设,在埃塞俄比亚非洲联盟泛非疫苗中心 (AU-PANVAC) 实验室对 12 名人员进行了新疫苗生产技术培训以及其他专业培训。六 (6) 名员工还参观了位于意大利的 IMA-Life 无菌和冻干解决方案工厂,作为咨询工作的一部分,与冻干机和灌装及完成生产线的制造商进行交流。此次访问提供了技术见解,使 NVRI 能够选择合适的无菌疫苗生产设备。为了为生产活动提供替代备用电源,生产设施安装了太阳能发电装置。细菌疫苗生产实验室进行了大规模改造,以提高其运营效率。我们还投资于改善冷链基础设施,安装新的冷藏室以及引入可持续能源解决方案来支持疫苗生产。这些设施预计将于 2025 年第一季度末完工。这些努力代表了对 NVRI 疫苗生产的重大投资,并将优化制造运营、技能和产能,因为我们将继续努力实现规模化和商业化。
定制隔音、防风雨外壳。包括: o 满载时 23 英尺的噪音水平为 75dBA o 钢制镶板结构。o 内部安装的消音器 o 电气套件包括 208/120、1 相、100A 配电板 灯开关 LED 照明 (1) 外部 GFCI 插座 从发电机到配电板罩的所有接线、导管和连接 直流应急照明 o 定制底座日用油箱 UL-142 认证、双层结构 由钢制成,涂成黑色 5200 加仑可用容量(72 小时) 燃油液位浮动系统 现场调试和 NFPA 110 测试 运送到工作现场包括。 4 年 Sourcewell 保修 (1) 8 小时培训日 附加项目:1) 一个封闭通道平台组件,包括以下项目:a) 两个 48 英寸宽 x 457 英寸长的外部走道组件 b) 一个 72 英寸宽 x 385 英寸长的中央走道组件 c) 两个 48 英寸宽 x 336 英寸长的前后走道组件 d) 一套 36 英寸宽的平台通道楼梯 e) 周边脚趾板 f) 符合 OSHA 标准 1910.24 的台阶组件 g) 台阶设计为 8 英寸上升和大约 9.5 英寸运行 h) 平台离地面高度:54 英寸 i) 镀锌钢筋格栅楼梯踏板 j) 结构钢支撑组件 k) 模块化镀锌钢扶手组件 l) 制造后对所有支撑组件进行喷丸处理 m) 制造后对所有支撑组件进行面漆处理 - 颜色与底座 n) 所有镀锌件均为精加工且未涂漆 o) 楼梯和平台散装运输,以便其他人在现场安装 p) 楼梯和平台设计为安装在混凝土垫块上
摘要:高熔点(HMP)无铅焊料、混合烧结和瞬态液相烧结(TLPS)是有望替代高铅焊料的新兴无铅替代品。无铅焊料与现有的夹片键合封装高铅焊接工艺完全兼容。混合烧结的好处是它比无铅或高铅焊料具有更高的热导率和电导率。在本研究中,首先通过芯片剪切测试评估了十种材料(包括无铅焊料、混合烧结膏和 TLPS)。在初步材料筛选之后,两种无铅焊料(焊料 1 和 2)、两种混合银烧结膏(烧结 i 和 ii)和一种 TLPS 进行内部样品组装。对于无铅焊料,借助真空回流进行了工艺优化,以降低空洞率。由于银-铜烧结比银-银烧结扩散慢且不均衡,为增强混合银烧结,需进行优化,包括对芯片金属化进行银精加工,对引线框架的夹片和键合区域进行银电镀。在 0 小时封装电气测试中,焊料 1 和烧结 i 通过并送去进行可靠性测试,而焊料 2、烧结 ii 和 TLPS 分别因金属间化合物 (IMC) 开裂、材料渗出和芯片开裂而失败。在可靠性测试中,早期可行性研究定义了热循环 (TC) 1000 次、间歇工作寿命 (IOL) 750 小时和高加速温湿度应力测试 (HAST) 96 小时的基本方案。75 个烧结 i 单元中有 1 个在 TC 1000 次循环中失败,原因是银烧结结构和芯片底部金属化之间的分离。焊料1无缺陷地通过了基本方案,接下来需要将材料的可加工性和夹持强度提高到与高铅焊料相当的水平。
- 铝合金棒、杆和线材;轧制、拉制或冷加工,3003。- 铝合金 5052,棒、杆和线材;轧制、拉制或冷加工。- 铝合金 6061,棒、杆、线材和特殊形状;轧制、拉制或冷加工。- 铝合金 3003,板材和薄板。- 铝合金 5052,板材和薄板。- 铝合金 6061,板材和薄板。- 铜硅、铜锌硅和铜镍硅合金:棒、线材、形状、锻件和扁平产品(扁平线材、带材、薄板、棒材和板材)。- 铝合金永久和半永久模具铸造。- 铝合金砂型铸件。- 含铅和无铅黄铜:扁平产品(板材、棒材、薄板和带材)。- 含铅和无铅黄铜:棒材、型材、锻件和带成品边缘的扁平产品(棒材和带材)。- 海军黄铜:棒材、线材、型材、锻件和带成品边缘的扁平产品(棒材、扁线和带材)。- 海军黄铜:扁平产品(板材、棒材、薄板和带材)。- 银钎焊合金。- 青铜锰;棒材、型材、锻件和扁平产品(扁线、带材、板材、棒材和板材)。- 青铜、磷;棒材、板材、棒材、板材、带材、扁线和结构型材及特殊形状型材。- 镀铬(电沉积)。- 铜棒材和型材;以及带精加工边缘的扁平产品(扁线、带材和棒材)。- 铜铍合金棒材、棒材和线材(铜合金编号 172 和 173)。- 铜铍合金带材(铜合金编号 170 和 172)。- 镍铜合金棒、杆、板、片、带、线、锻件、结构和特殊形状型材。- 镍铜铝合金,锻造(UNS N05500)。- 镍铜合金和镍铜硅合金铸件。- 镀镍(电沉积)。
这个问题越来越受到关注,尤其是在运动服,运动服和工作服领域。[1,2]水分管理纺织品是指具有单向运输特性的服装,使水分可以从佩戴者的身体中运输出来。[3,4]人们倾向于在许多条件下大量出汗或发汗,例如,在潮湿而热门的环境中,或者处于强化运动状态。在这种情况下,出汗遵循人体,效率低下的水分传输不仅会影响热生理舒适性,而且会导致不适和可能的皮肤状况。[5,6]因此,必须具有出色的方向性水分运输能力的材料来保持佩戴者的固定瓷砖和表演。[7,8]在这方面,水分芯技术已被用作有前途的方法之一。水分芯的效率取决于几个参数,这些参数是结构性设计,底物的表面作用,孔的微结构和毛细管力(FCF)。[9]正在采用各种技术,包括由表面改性的羟化型超细纤维组成的单个分层纺织品。[10]这种纺织品通常是从聚酯和聚丙烯中脱离的,这些纺纱表现出高水分释放和低水分携带。这款单层微纤维纺织品需要轻微的精加工,以增强其水分传输能力。Janus纺织品是指每侧具有不对称特性的纺织品。[11,12]芯吸技术的另一种应用方法是利用卫星微纤维,Coolmax Fiber旨在改善所得纺织品的水分传输性能。[13]它显示出相当大的水分传输能力,但是,这种单层纺织品无法保留液体并阻止其沿反向方向越过纺织品,也就是说,这是双向液体液体水分传输纺织品。他们吸引了越来越多的注意力,他们对水分管理的潜在收益。由于每一层的独立剪裁和设计,这种纺织品具有更有效的液体水分传输性能。在我们的工作背景下,可以通过两种主要策略来制造具有方向性水分传输能力的Janus材料:1)通过将它们涂在布上[14-18]和2)形成疏水性 - 氢化性
