Halo-Flipper是一种荧光探针,专门标记Halotag™*,并报告膜张力通过其荧光寿命变化而变化。它包含氯烷烃Halotag™*配体以及一个束缚的Flipper-TR荧光团,该荧光团感受着围绕Halotag™*蛋白质的脂质双层膜的组织变化。晕圈是可渗透的,自发标记表达细胞的挂钩,仅当插入脂质膜中时才荧光。它具有广泛的吸收和发射光谱,激发通常可以用488nm激光器进行,而发射则在575至625nm之间收集。这是精确定位细胞内曲面膜张力荧光团的理想工具。氯烷烃(CA)是自标签标签Halotag™*的底物。与CA衍生物反应后,Halotag™*与底物形成共价键。它允许将荧光标签永久连接到任何感兴趣的蛋白质(POI)(POI),以HALOTAG™*融合
2017 年《国防授权法案》(NDAA)要求开展一项研究,“评估和确定技术中立要求,以支持和补充全球定位系统 [GPS] 的定位、导航和授时 [PNT] 功能,以保障国家安全和关键基础设施安全。” 拥有准确的 PNT 对全国的关键基础设施至关重要,目前 GPS 是许多应用的主要 PNT 信息来源。但是,GPS 信号容易受到无意和有意干扰,从而使关键基础设施易受攻击。由于许多关键基础设施部门都需要精确定位或授时,国土安全运营分析中心 (HSOAC) 的任务是向美国国土安全部 (DHS) 提供一份研究报告,研究拟议的新 PNT 系统对各种关键基础设施的成本和收益。这项研究由国土安全部国家保护和计划局基础设施保护办公室赞助,并在 HSOAC 联邦资助研究和开发中心 (FFRDC) 的收购和开发计划范围内进行。
5G-CLARITY 项目属于欧洲 5G-PPP 计划的第三阶段 [1],该计划正在研究私有 5G 网络概念应如何在 3GPP Release 16 [2] 之后演进。该项目在两大支柱上带来了创新:首先,将开发新颖的用户和控制平面组件,以提供集成 5G 新无线电 (5GNR)、WiFi 和光保真 (LiFi) 的私有 5G 网络,以增强 5GNR 在峰值数据速率、区域容量、低延迟和精确定位方面的功能。其次,管理推动器允许对异构接入网络进行切片,集成私有和公共网络,使用高级意图语言操作网络,并结合 ML 模型来支持网络功能的运行。5G-CLARITY 创新将应用于英国布里斯托尔博物馆的人机交互用例,以及西班牙巴塞罗那汽车工厂的两个工业 4.0 用例。
GPS IIIF 卫星将保留与 GPS III 卫星相同的功能,但还将提供重大增强,包括:区域军事保护能力,能够在特定预期效果区域提供高功率区域军事代码 (M-Code) 信号、统一 S 波段接口合规性以及托管有效载荷的集成(重新设计的核爆炸检测系统、激光反射器阵列、搜索和救援/GPS、高能带电粒子传感器)。与 GPS III 计划对军事用户的支持一致,GPS IIIF 计划为军事行动和部队增强提供精确定位服务 (PPS)。它还为地球覆盖军事代码信号和反利用技术提供了增强的抗干扰能力,以防止未经授权使用 GPS PPS 信号。此外,该计划将通过托管有效载荷支持美国核爆炸检测系统任务,用于全球监测和检测核事件,以及国际 Cospas-Sarsat 搜索和救援任务,用于检测和定位紧急信标。
电子病历(EMRS)虽然与现代医疗保健不可或缺的一部分,但由于其复杂性和信息还原而呈现临床推理和诊断的Challenges。为了解决这个问题,我们提出了Medikal(将K Nowledge图作为L LMS的ssistants),该框架将大型语言模型(LLMS)与知识图(kgs)结合在一起,以增强诊断性capabilies。Medikal根据其类型将医疗记录中的实体分配给实体的重要性,从而使候选疾病的精确定位在公里内。它创新采用了类似残留的网络样方法,从而使LLMS诊断可以合并为kg搜索结果。通过基于路径的重新算法算法和填充风格的提示模板,它进一步完善了诊断过程。我们通过对新型开源的中国EMR数据集进行了广泛的实验来验证Medikal的有效性,这表明了其在现实环境中提高临床诊断的潜力。代码和数据集可在https://github.com/csu-nlp-group/medikal上公开获得。
摘要 — 为了确保这种新兴器件的可靠性,控制导电桥式随机存取存储器 (CBRAM) 中的细丝生长至关重要。在这里,我们证明了扫描焦耳膨胀显微镜 (SJEM) 可用于检测和精确定位工作中的交叉 CBRAM 器件中的导电细丝。基于 Pd/Al 2 O 3 /Ag 堆栈的柔性存储器件首先在低温下在聚酰亚胺基板上精心制作。这些器件在低压 (<2V) 下显示置位和复位操作,开/关比高于 10 4 。在低电阻状态下操作时,SJEM 振幅图像显示出单个导电细丝存在下的热点。在 50kHz 下提取的有效热扩散长度为 4.3µm,并且还证明了热膨胀信号与耗散的焦耳功率成正比。我们相信,所提出的程序为可靠性研究开辟了道路,可将其应用于任何基于细丝传导的存储器件系列。索引词——CBRAM、柔性电子、SJEM、长丝定位。
摘要综合电路行业与中国的国民经济发展和安全国防有固有的联系。其产品质量和生产力作为瓶颈分辨率至关重要,取决于微电机设备运动平台的性能。但是,运动平台面临一系列要求,包括高加速度,超精确定位等。理论上可以通过典型的宏观微型驾驶概念平台来解决这些要求。因此,提出并实施了各种运动平台。在探索宏观微运动平台的分析过程中,特别是对于某些关键结构,例如链路框架,柔性铰链机制等,提出了许多有效的多物理耦合优化方法,以获得平台的出色性能。同时,描述了宏观微运动平台的振动抑制,以确保超专业定位。终于提出了发展趋势以及面临宏观微运动平台的问题。本综述将促进微电子制造设备的升级,并加速微电子制造业的快速发展。关键字:集成电路行业,宏观微型运动平台,高速加速,高速,
面对气候变化的不断升级威胁需要创新和大规模的交流。本文提出了一项大胆的建议,以在遥远的玄武岩海床中采用埋藏的核爆炸,以粉碎玄武岩,从而通过造型岩石风化(ERW)加速了碳固存。通过精确定位海底下方的爆炸,我们旨在弥补碎屑,辐射和能量,同时确保在足够的地表下迅速岩石风化,以使大气中的碳含量有意义。我们的分析概述了有效的碳捕获和最小的侧支效应所必需的参数,强调对Gigatons的收益率对于全球气候影响至关重要。尽管这种方法可能看起来很激进,但我们通过检查安全因素,保存当地生态系统,政治考虑和财务生存能力来说明其可行性。这项工作主张将核技术重新构想不仅是破坏力的力量,而且是脱碳的潜在催化剂,从而邀请进一步探索针对气候变化的领域中的开拓解决方案。
Twelve Labs 使用多模态视频语言基础模型来捕获视频的完整语义和上下文内容——这意味着捕获的语义和上下文内容存储在称为“嵌入”的矢量表示中,然后实现对视频的人类层面的理解。媒体服务平台 VidiNet 和 Twelve Labs 产品的集成提供了一种解决方案,使手动记录和元数据生成变得过时。将 Twelve Labs 的视频语言基础模型集成到直观的用户界面 MediaPortal 中,改变了用户搜索资料的方式,因为它无需在核心服务 Vidi-Core 中索引所有静态元数据字段。用户现在可以使用自然语言查询精确定位视频档案中的特定时刻,并与 VidiNet 索引的元数据无缝合并。但这到底意味着什么呢?用户现在可以使用自然语言查询在他们的视频中找到确切的时刻,并将它们与来自 Vidispine 应用程序的元数据相结合。
早期和晚期乳腺癌患者的治疗效果不断改善,这在很大程度上要归功于新型全身疗法的成功。在这篇综述中,我们讨论了支撑这一成功的关键概念范式,包括 (1) 靶向驱动因素:识别和靶向乳腺癌中的主要癌蛋白;(2) 靶向谱系通路:抑制那些驱动正常乳腺上皮细胞增殖的通路,这些通路在癌症中仍然很重要;(3) 精准靶向:应用分子分类器来优化特定癌症的治疗选择,以及抗体 - 药物偶联物来精确定位肿瘤和促肿瘤细胞以进行根除;(4) 利用合成致死性:利用癌症特异性分子改变引起的独特弱点。我们描述了在每个范式中发现的新型疗法的有希望的例子,并提出了未来的药物开发工作如何从这些原则的持续应用中受益。