摘要:自主救援工具的开发代表了精确导航和人工智能技术的开创性融合。这种创新的车辆旨在通过自动操作来最大程度地降低人类风险,从而彻底改变救援行动。利用高级GPS技术和机器学习算法进行精确的导航和障碍检测,该系统不仅可以增强安全性,还可以自动化任务,降低操作成本并简化救援过程。该项目的主要目标是在维护人类救援人员的福祉的同时,显着提高紧急响应操作的效率和有效性。通过自主行驶灾难的地区,确定危害并及时提供帮助,该车辆旨在减少响应时间,增加挽救生命的可能性,并增强自然灾害,事故或其他紧急情况下的救援工作的总体协调。配备了高级传感器,强大的通信系统和智能决策算法,这款自动救援车有望成为保护社区并减轻不可预见危机的影响的重要资产。这项技术不仅代表了救援行动中的重大飞跃,而且为以灾难响应的创新和效率为标志的未来树立了舞台。索引术语-NVIDIA JETSON NANO,RP LIDAR,ARDUINO MEGA ATMEGA2560,L298N运动驱动器模块,DC Motor 6812,伺服电机,锂离子电池,5MP Raspberry Pi Camera Module,RF(无线电频率)遥控器,Bnc Connector,Bnc Connector,Bnc Connector,Fibe I.介绍面对不断增加的自然灾害,事故和紧急情况,对高效有效的救援行动的需求变得至关重要。应对这一挑战,自主救援车的发展是希望和创新的灯塔。通过利用精确导航和人工智能的力量,这款尖端的车辆代表了紧急响应领域的范式转变。在其核心上,自动救援车辆集成了高级GPS技术和复杂的机器学习算法,以确保精确的导航,同时实时检测障碍。这种技术奇迹不仅可以增强救援人员和受害者的安全性,而且还改变了传统的救援任务景观。通过自主行动来最大程度地降低人类风险,该车辆简化了整个救援过程,自动化任务,降低运营成本以及增强紧急响应工作的效率。推动该车辆创建的主要目标是彻底改变我们进行紧急响应操作的方式。通过自主在灾难的地区进行自主航行,确定危害并及时提供帮助,该车辆大大减少了响应时间,从而增加了挽救生命的机会。此外,高级传感器,强大的通信系统和智能决策算法的整合使自主救援车辆在维护社区中充当至关重要的资产,并减轻不可预见的危机的影响。
航空电子设备是现代飞机的基石。军用和民用飞机上的重要功能越来越多地涉及电子设备。除了机身和发动机的成本之外,航空电子设备是飞机上最昂贵的设备,但每一分钱都是值得的。过去十年中出现了许多将在新千年得到利用的技术。在通过地面应用证明设计合理性之后,先进的微处理器正在进入飞机领域,提供十年前闻所未闻的新功能。全球定位系统实现了基于卫星的精确导航和着陆,通信卫星现在能够支持航空服务。因此,航空界正在转向基于卫星的通信、导航和监视来进行空中交通管理。飞机运营商和空中交通服务提供商都从中获益匪浅。本书中熟悉的技术包括数据总线(其中一种已经使用了 20 多年)、头戴式显示器和电传飞行控制。新的总线和显示概念正在出现,可能会取代这些老旧设备。视网膜扫描显示器就是一个例子。其他新兴技术包括与飞机的语音交互和合成视觉。语音交互可能很快进入商用飞机的商业服务,作为执行一些非关键功能的另一种方式。合成视觉提供了巨大的潜力
设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。使用机器学习(ML)引导蛋白质设计有可能通过精确导航坚固的健身景观来加速发现高性能酶。在这项工作中,我们描述了ML引导的运动,以设计Nuclease NucB,该核定是一种酶,该酶在治疗慢性伤口的酶降解生物膜,以治疗慢性伤口。在多发酶演化活动中,我们将超高通量功能筛选与ML相结合,并将其与平行的电脑内定向进化(DE)和硅内命中重组(HR)策略进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,而DE的最佳变体提高了12倍。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
非 MDE:还包括可认证地面控制站;TPE-331-10-GD 发动机;M299 地狱火导弹发射器;KIV-77 加密贴花和其他敌我识别 (IFF) 设备;KOR-24A 小型战术终端 (STT);AN/SSQ-62F、AN/SSQ-53G 和 AN/SSQ-36 声纳浮标;ADU-891/E 适配器组测试仪;通用弹药内置测试 (BIT) 重新编程设备 (CMBRE);GBU-39B/B 战术训练弹、武器装载机组教练机和仪表可靠性评估车辆;便携式飞行前/飞行后设备 (P3E);CCM-700A 加密设备;KY-100M 窄带/宽带终端;KI-133 加密单元; AN/PYQ-10 简易钥匙装载机;自动识别系统 (AIS) 应答器;ROVER 6Si 和 TNR2x 收发器;MR6000 超高频 (UHF) 和甚高频 (VHF) 无线电;Selex SeaSpray 有源电子扫描阵列 (AESA) 监视雷达;HISAR-300 雷达;SNC 4500 自动电子监视措施 (ESM) 系统;SAGE 750 ESM 系统;Due Regard 雷达 (DRR);MX-20 电光红外 (EO-IR) 激光目标指示器 (LTD);Ku 波段 SATCOM GAASI 可移动地面站 (GATES);C 波段视距 (LOS) 地面数据终端;AN/DPX-7 IFF 应答器;紧凑型多波段数据链 (CMDL);初始备件和维修零件、消耗品、配件以及维修和退货支持;安全通信、精确导航和加密设备;弹药支持和支持设备;测试和集成支持和设备;机密和非机密软件交付和支持;机密和非机密出版物和技术文档;人员
本研究介绍了使用我们的环形激光陀螺仪 ( RLG ) 导航级捷联惯性测量单元 ( SIMU ) 类型 iNAV-RQH 进行的特性和一些评估实验结果,精度为 1 nmi/h。在简要介绍 SIMU 的主要特征后,给出了惯性传感器构造原理和误差模型的描述。为了评估我们的捷联 IMU,我们设计了实验室和现场测试,在中等精度转盘和汽车导航任务框架内进行,使用 DGPS(差分 GPS)参考解决方案(在我们的案例中,是一种即时 ( OTF ) 运动学 DGPS 解决方案,在整数秒的常规时期提供精确的位置参考)。使用专用软件 Kingspad 获得后处理的 3-D 惯性或集成 GPS/INS 解决方案。还介绍了噪声和误差分析,以及实验室和现场测试的具体结果。位置精度在亚 dm 域内(与 cm 精度 DGPS 参考轨迹的差异,1-σ 相对误差约为 1 cm),驱动轨迹周长分别为数百米。加速度误差在 mGal 域内(经过约 60…100 秒的适当过滤后),姿态误差在角秒范围内,iMAR 的 RLG SIMU 类型 iNAV-RQH 被认为完全适合精确导航、测量和精确重力测定。[Dorobantu et al., 2004] 中已经给出了一些初步结果,目前的扩展形式包括传感器技术和误差模型的更多内部内容,以及使用 ZUPT s(惯性导航系统零速度更新)的室内 INS 导航实验。附录中介绍了补充实验,如静态倾斜、阻尼测试或 SIMU 的静态评估,以及对 ISA(惯性传感器组件)的更多了解,或从已注册的 SIMU 数据直接推导大地测量参数。
印度钦奈研究所摘要人工智能 (AI) 和纳米技术的最新进展推动了智能纳米机器人的发展,为疾病管理提供了一种变革性的方法,特别是在神经药剂学和血液疾病监测领域。本研究探讨了纳米粒子在生物医学工程中的潜力,特别关注它们作为纳米机器人的应用,这些机器人能够穿过血脑屏障 (BBB),用于脑肿瘤和阿尔茨海默病和帕金森病等神经系统疾病的靶向有效载荷输送。这些纳米机器人设计有传感器、执行器、电源和通信系统,利用人工智能算法在血流中精确导航。石墨烯和金纳米粒子等材料可确保生物相容性,提高靶向治疗的安全性和有效性。此外,人工智能驱动的纳米机器人正在彻底改变癌症药物的输送,降低毒性并改善治疗效果。此外,它们在心血管健康监测中显示出良好的前景,可用于早期疾病检测。然而,监管和技术障碍等挑战依然存在,需要持续的研究才能充分发挥人工智能纳米机器人在个性化和精准医疗中的潜力。 关键词:纳米机器人、人工智能、机器学习、靶向药物输送、生物医学应用 1.引言 人工智能 (AI) 和纳米技术 (NT) 的融合将彻底改变各个行业,包括医学、能源和材料科学。本研究深入探讨了人工智能驱动的 NT 发展的潜力,强调了人工智能加速该领域发现、设计和增长的能力。突出的应用包括增强药物输送、人工智能优化的生物监测和精确的材料特性预测以实现能源利用。虽然当前的人工智能系统面临着需要大量数据集和稳健方法等限制
3 中央水利电力研究站,印度浦那 摘要:微机电系统 (MEMS) 已成为一项突破性技术,广泛应用于从消费电子产品到医疗保健和商业等各个行业。本研究重点介绍了基本概念、操作原理和多种 MEMS 应用。MEMS 技术结合了小型机械和电气部件,可创建微米或纳米级的设备。MEMS 设备以其感知、控制和改变微小物理过程的能力而著称。它们将微电子技术与微加工方法相结合,构建了重量轻、节能且价格合理的复杂系统。MEMS 非常重要,因为它们可以解决许多不同领域的难题。MEMS 加速度计、陀螺仪和压力传感器彻底改变了我们与消费电子产品互动的方式,使手势识别、图像稳定和精确导航等功能成为可能。由于基于 MEMS 的传感器和执行器,在医疗保健领域,用于监测生命体征、药物输送系统和微创手术器械的可穿戴设备的出现已成为可能,从而改善了患者护理和治疗效果。在汽车领域,MEMS 对于安全功能的实现也至关重要,包括安全气囊展开、轮胎压力监测和车辆稳定性控制。MEMS 技术还对能量收集系统、电信、航空应用和环境监测产生了重大影响。温度、压力、湿度、气体浓度和加速度是 MEMS 传感器用于测量和调节的因素之一。这些应用对提高生产率、降低成本和提高整体性能具有重大影响。然而,MEMS 技术的发展并非没有困难。技术挑战包括材料选择、设备集成和制造方法。其他持续存在的问题包括保证可靠性、耐用性和在大规模生产过程中保持高产量。索引术语 - MEMS、制造、监测、设备、蚀刻。
纳米机器人代表了靶向药物输送和神经系统疾病治疗的变革性前沿,具有跨越血脑屏障 (BBB) 的巨大潜力。利用纳米技术和生物工程的进步,这些微型设备表现出精确导航和靶向有效载荷输送的能力,特别是在治疗脑瘤、阿尔茨海默病和帕金森病等疾病方面。人工智能 (AI) 和机器学习 (ML) 的最新发展正在增强纳米机器人的导航和功效,使它们能够通过生物标志物分析检测癌细胞并与癌细胞相互作用。这项工作提出了一种新颖的强化学习 (RL) 框架,用于优化纳米机器人在复杂生物环境中的导航,重点是通过分析周围生物标志物的浓度梯度来检测癌细胞。使用计算机模拟模型,我们探索了纳米机器人在充满癌细胞和生物屏障的三维空间中的行为。所提出的方法采用 Q 学习来根据实时生物标志物浓度数据改进运动策略,使纳米机器人能够自主导航到癌组织进行靶向药物输送。这项研究为后续的实验室实验和临床应用建立了基础模型,对推进个性化医疗和开发微创癌症治疗具有重要意义。智能纳米机器人的整合可以彻底改变治疗方法,减少副作用并提高癌症患者的治疗效果。进一步的研究将探索这些技术在医疗环境中的实际部署,旨在充分发挥纳米机器人在医疗保健领域的潜力。此模拟的源代码可在 GitHub 上找到:https://github.com/SHAHAB-K93/cancer-and-smart-nanorobot
由高级技术(例如机器学习(ML),物联网(IoT)和云计算)授权的开创性解决方案。自主水监护人代表水废物管理的范式转移,为监测和清洁水体提供了全面有效的方法。AWG功能的核心是无数传感器,包括用于精确称重的废物的HX711和5KG负载电池,用于湿度监测的DHT11传感器以及用于实时水质评估的pH传感器。这些传感器同时起作用,以提供有关水条件的准确和及时数据,从而积极干预以防止污染和保护水资源。AWG操作的核心是它与云平台的集成,利用Blynk IoT平台进行无缝的数据传输和管理。通过Blynk移动应用程序,用户可以访问有关AWG的水质,废物水平和操作状态的实时信息。此外,AWG的智能通知系统在废物箱达到满负荷时提醒用户,从而触发自动收集过程。AWG的关键创新是其废物收集机制,该机制是由旨在有效检索和存储废物的电梯状结构促进的。配备了摄像头进行对象检测,AWG利用Yolo V7算法来识别和分类废料,以确保有针对性且有效的清洁操作。我们重点介绍其创新功能,包括传感器集成,云连接,废物检测和自动导航。此外,通过NEO6M模块集成的GPS技术可实现AWG的精确导航,确保了由Raspberry Pi 4 Model B 4GB提供的指定水体的最佳覆盖范围,AWG在预先定义的路线后自动运行,并有效地收集了高达5kg的浪费。通过细致的编程和硬件集成,AWG体现了尖端技术的融合,以应对本文的紧迫环境挑战,我们介绍了AWG的设计,实现和性能评估的全面概述。此外,我们讨论
几十年来,太空和太空系统的军事用途 4 一直是当代战争不可分割的一部分。例如,武装部队依靠卫星导航系统实现精确导航和瞄准,依靠卫星实现全球通信(包括指挥和控制),依靠天基监测系统提前发出导弹袭击、监视和侦察的警告。随着太空系统在军事行动中的作用不断增加,这些系统在武装冲突中成为目标的可能性也在增加,无论是地面部分、太空部分还是两者之间的任何连接。对太空系统的潜在威胁包括电子战、网络作战、定向能攻击以及使用轨道和地面反卫星武器。必须强调的是,国家使用武力的任何行为——无论是通过动能还是非动能手段,使用太空和/或地面武器系统——都受《联合国宪章》和习惯国际法相关规则的约束,特别是禁止威胁或使用武力的规定。国际争端必须以和平方式解决,无论是在外层空间还是在所有其他领域。武装冲突期间在外层空间或与外层空间有关的军事行动 5 可能会对地球上的平民产生重大影响,因为空间系统所实现的技术渗透到了平民生活的方方面面,因此对空间系统的攻击可能造成的后果成为人道主义关切的问题。 6 例如,医疗保健、交通、通信、能源和贸易所需的民用基础设施越来越依赖于空间系统。空间物体——特别是气象、通信、导航和地球观测/成像卫星——也为人道主义工作的每个阶段做出贡献,从需求评估到紧急救援,从早期恢复到灾难和冲突风险降低。然而,许多这些民用卫星或其部分有效载荷也可能为武装部队服务,因此具有双重用途性质,这可能使它们成为军事目标。 7 另一个日益令人担忧的问题是空间垃圾。鉴于其飞行速度、位置和持续时间,碎片有可能损坏支持地球上安全关键的民用活动和基本民用服务的其他空间物体。