摘要 - 生活系统既面临环境复杂性,又面临着有限的自由能资源的访问。在这些条件下的生存需要一个可以在上下文中激活或部署可用的感知和行动资源的控制系统。在本第I部分中,我们介绍了自由能原理(FEP)和主动推断作为贝叶斯预测的想法 - 最小化,并显示控制问题是如何在主动推理系统中产生的。然后,我们回顾FEP的经典和量子公式,前者是后者的经典限制。在随附的第二部分中,我们表明,当系统描述为执行由FEP驱动的主动推理时,它们的控制流系统总是可以表示为张量网络(TNS)。我们展示了如何在量子拓扑神经网络的一般框架内实现TNS作为控制系统,并讨论了这些结果对在多个尺度上对生物系统进行建模的含义。
髓母细胞瘤是儿童中最常见的恶性肿瘤脑肿瘤,是导致肿瘤形成的失调发育机制的范式(Marino 2005)。它分为四个亚组(SHH,Wnt,G3和G4),每个子组进一步细分为亚型。已经确定了这些祖细胞的基本信号传导路径的放松调节,这些祖细胞的基本信号通路是综述的(有关审查,请参阅Marino和Gilbertson 2021)。在大脑中,原发性纤毛 - 基于微管的细胞结构,固定在基底体上,该结构用作纤毛微管组装的温度(Larsen等人2013) - 对其发展至关重要。它们从细胞的表面伸出,感知多个信号,并引入基本信号通路,包括关键的发育途径Sonic Hedgehog(SHH)和Wnt。例如,纤毛在SHH驱动的前脑图案中起着关键作用,包括中间神经元的迁移;在小脑发育中,特别是小脑祖细胞的扩张;在海马神经发生中2019)。Wnt介导的树突状细化和海马中成年牙齿颗粒细胞中的突触形成也是由Cilia进行的(Kumamoto et al。2012)。原发性纤毛在包括髓母细胞瘤在内的各种脑肿瘤的发病机理中被认为(Han等人2009),脉络丛 - 美国肿瘤(Li等人2016)和胶质母细胞瘤(Goranci-Buz-Hala等人2021);但是,其角色的机械基础刚刚开始揭露。
上皮细胞上的顶纤毛通过从呼吸道气道中推动病原体和颗粒物来捍卫肺。纤毛细胞产生的ATP,可以通过将顶部膜下方的线粒体密度分组为纤毛跳动。但是,这种有效的定位是付出代价的,因为在氧化苯二元化过程中泄漏的电子与分子氧反应形成超氧化物,因此,线粒体的簇产生了用于氧化生产的热点。相对较高的氧气浓度上覆的气道上皮进一步增强了产生超氧化物的风险。因此,气道纤毛细胞面临产生有害氧化剂水平的独特挑战。令人惊讶的是,高度纤毛上皮产生的活性氧(ROS)比几乎没有纤毛细胞的上皮含量较少。与其他空气细胞类型相比,纤毛细胞表达高水平的线粒体解偶联蛋白UCP2和UCP5。这些蛋白质降低了线粒体质子示数力,从而降低了ROS的产生。结果,脂质过氧化是氧损伤的标志物,减少了。然而,线粒体解偶联蛋白的确切价格可以减少氧化剂的产生;它们减少了产生ATP的线粒体呼吸的比例。这些发现表明纤毛细胞牺牲线粒体效率,以换取安全氧化的安全性。使用解偶联蛋白来防止氧化剂产生,而不是仅仅依靠抗氧化剂来降低后生产氧化剂水平,可能为靶向靶向强烈的ROS产生的局部区域提供了优势。
摘要 纤毛病是一种广泛的遗传性发育和退行性疾病,与运动纤毛或原发性非运动纤毛的结构或功能缺陷有关。已知的纤毛病致病基因约为 200 种,虽然基因检测可以提供准确的诊断,但接受基因检测的纤毛病患者中有 24-60% 并未得到基因诊断。部分原因是,根据美国医学遗传学学院和分子病理学协会的现行指南,很难对由错义或非编码变异引起的疾病做出可靠的临床诊断,而这些变异占疾病病例的三分之一以上。PRPF31 突变是退行性视网膜纤毛病常染色体显性视网膜色素变性的第二大常见病因。在这里,我们提出了一种高通量高内涵成像检测方法,可定量测量 PRPF31 错义变异的影响,符合最近发布的临床变异解释基线标准体外测试标准。该检测利用了使用 CRISPR 基因编辑生成的新型 PRPF31 +/– 人视网膜细胞系,以提供具有明显更少纤毛的稳定细胞系,其中表达和表征了新的错义变体。我们表明,在零背景下表达纤毛病基因错义变体的细胞的高内涵成像可以根据纤毛表型表征变体。我们希望这将成为临床表征意义不明确的 PRPF31 变体的有用工具,并可以扩展到其他纤毛病中的变体分类。
摘要 4 AM 和 0.5 AM 钒 (V) [V(V),钒酸盐] 分别完全抑制了脱膜海胆精子鞭毛和用 0.1 mM ATP 重新激活的胚胎纤毛的运动能力。0.5-1 AM V(V) 可抑制潜伏形式的动力蛋白 1 的 Mg2+ 激活 ATPase 活性 (ATP 磷酸水解酶,EC 3.6.1.3) 50%,而 Ca2+ 激活 ATPase 活性则不那么敏感。V(V) 对鞭毛摆动频率和动力蛋白 1 ATPase 活性的抑制似乎不是与 ATP 竞争的。与其他报告一致的是,V(V) 对 (NaK)ATPase 的抑制在 ATP 存在下起效较慢,而在 ATP 不存在下起效相对较快。然而,对于动力蛋白,无论是否存在 ATP,抑制都会以快速的速度发生。浓度为 1 mM 的儿茶酚可逆转 V(V) 对重新激活的精子运动、动力蛋白 ATPase 和 (NaK)ATPase 的抑制。浓度高达 500 AM 的 V(V) 对肌球蛋白和肌动球蛋白 ATPase 均无抑制作用。V(V) 的抑制提供了一种可能的技术,用于区分动力蛋白和肌球蛋白在不同形式的细胞运动中的作用。
抽象的穿梭RNA结合蛋白协调基因表达的核和细胞质步骤。SR家族蛋白调节细胞核中的RNA剪接,其中包括SRSF1(包括SRSF1)的子集,核和细胞质之间的穿梭,影响后切割过程。然而,这一点的生理意义尚不清楚。在这里,我们使用基因组编辑来敲入SRSF1中的核保留信号(NRS),以创建具有仅保留在细胞核中的SRSF1蛋白的小鼠模型。srsf1 NRS/NRS突变体显示出小体型,脑积水和免疫力精子,这些特征与纤毛缺陷有关。我们观察到了一部分mRNA的子集的翻译减少,并降低了参与多重生成的蛋白质的丰富度,并且在该小鼠模型中得出的细胞和组织中纤毛超微结构和运动性的破坏。这些结果表明,如此处观察到的,在高细胞需求的背景下,在高细胞需求的背景下,SRSF1穿梭用于重新编程基因表达网络。
主要纤毛是一个信号室,通过其蛋白质,脂质和第二信使组成的变化来解释刺猬信号。在这里,我们将纤毛的接近标记与定量的质谱法结合了响应于刺猬的纤毛蛋白质组的时间依赖性变化。这种方法正确地识别了已知经历刺猬调节的睫状重新分布的三个因素,并揭示了两种此类额外的蛋白质。首先,我们发现cAMP依赖性蛋白激酶(PKA)的调节亚基迅速退出纤毛,以及G蛋白 - 耦合受体GPR161响应HEDGEHOG,我们建议GPR161/PKA模块的感觉和camp Signals Camp Signals Signals Signals CILAIRY PKA。第二,我们将磷酸酶圣丁素识别为细胞类型 - 刺猬信号的特定调节剂,该刺猬信号传导在途径激活时进入原发性纤毛。定量睫状蛋白质组谱分析的广泛适用性有望快速表征纤毛病及其潜在信号故障。
感染传染性支气管炎病毒后,上皮细胞表面的纤毛会被破坏。气管的保护系统明显减弱,从而有利于继发性病原微生物的侵入。可以使用纤毛停滞测试来量化睫毛破坏效果。
抽象的外臂动力蛋白(OAD)是纤毛跳动的主要力发生器。尽管OAD损失是人类原发性睫状运动障碍的最常见原因,但OAD的对接机制在纤毛双线微管上(DMT)仍然难以捉摸脊椎动物。在这里,我们使用斑马鱼精子和冷冻电子层析摄影术分析了脊椎动物OAD-DC(停靠复合物)的五个组成部分中的Calaxin/efcab1和ARMC4的功能。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。 详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。 我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。
摘要 微生物成分对胎儿大脑有一系列直接影响。然而,人们对介导这些影响的细胞靶点和分子机制知之甚少。神经祖细胞 (NPC) 控制大脑的大小和结构,了解调节 NPC 的机制对于理解大脑发育障碍至关重要。我们发现心室放射状胶质细胞 (vRG),即主要的 NPC,是抗生素治疗产妇肺炎期间产生的细菌细胞壁 (BCW) 的靶点。BCW 通过缩短细胞周期和增加自我更新来增强 vRG 的增殖潜力。扩增的 vRG 繁殖以增加所有皮质层的神经元输出。值得注意的是,识别 BCW 的 Toll 样受体 2 (TLR2) 位于 vRG 中初级纤毛的底部,BCW-TLR2 相互作用抑制纤毛发生,导致 Hedgehog (HH) 信号的解除抑制和 vRG 扩增。我们还表明,TLR6 是 TLR2 在此过程中的重要伙伴。令人惊讶的是,在健康条件下,仅 TLR6 就需要设定皮质神经元的数量。这些发现表明,来自 TLR 的内源性信号在新皮质正常发育过程中抑制皮质扩张,而 BCW 通过 TLR2/纤毛/HH 信号轴改变大脑结构和功能来拮抗该信号。