本书包含的信息均来自可靠且备受推崇的来源。我们已尽合理努力发布可靠的数据和信息,但作者和出版商不能对所有材料的有效性或其使用后果承担责任。作者和出版商已尝试追踪本出版物中复制的所有材料的版权所有者,如果未获得以这种形式发布的许可,我们向版权所有者道歉。如果任何版权材料未得到承认,请写信告知我们,以便我们在将来的重印中纠正。
mon theme.第 I 部分包含七章,涉及用于药物输送的纳米材料。第 I 部分涵盖的主题包括刺激响应纳米结构二氧化硅基质、金纳米粒子和用于靶向药物输送应用和牙科应用的脂质体。此外,本节还涵盖了作为癌症治疗和肽治疗的纳米载体和纳米粒子的材料。第 II 部分包含两章,专门介绍抗菌纳米材料。第 II 部分涵盖了表面特性对微生物粘附的影响,并总结了用于医疗应用的抗菌纳米结构聚合物的最新进展。第 III 部分包含五章,涉及生物传感器中的纳米材料,第 IV 部分包含一章,介绍纳米材料的安全性。第三部分涵盖了传染性病原体纳米诊断技术、用于病原体检测的显色生物传感器、用于检测 DNA 损伤和基因毒性的电化学生物传感器以及量子点分子成像(包括用于生物传感应用的聚合物表面改性)的最新进展。
团队展示:鼓励学生从多功能纳米材料中选择一个主题。团队展示时间为 25 分钟,包括提问。每个团队应涵盖以下四个主题,包括 i)纳米尺度上的基础科学;ii)纳米材料的制造;iii)纳米材料的特性;iv)纳米材料的应用。所有团队应于 2022 年 11 月 28 日下午 6:00 将他们的 ppt 文件副本发送给导师。最终个人学期论文:鼓励学生从多功能纳米材料和 Felice C. Frankel 和 George M. Whitesides 所著的《无小事:纳米尺度上的科学》一书中选择一个主题。学期论文应 i)描述纳米尺度上的现象及其基础科学;ii)设想在纳米技术中的潜在应用;iii)确定一个关键的、尚未解决的科学或技术问题。学期论文应为 5-6 页(Times New Roman,12 pt,单倍行距),包括文本和图表,不包括参考文献。最终论文应于 2022 年 12 月 8 日下午 6:00 通过电子邮件提交。
2022 年 11 月 11 日 时间 会议 发言人 08:00~08:45 全体会议报告 (实验) Prof. Dr. Hyeonsik Cheong 08:45~08:55 短暂休息 08:55~09:40 全体会议报告 (实验) Prof. Dr. Knut Irgum 09:40~09:55 咖啡休息 09:55~10:40 全体会议报告 (实验) Prof. Dr. Magnus Willander 10:40~10:50 短暂休息 10:50~11:20 特邀报告 Dr. Chan Oeurn Chey 11:20~11:50 特邀报告 Prof. Dr. Jiang Junfeng 11:50~12:20 特邀报告 Dr. Veasna Soum 12:20~14:00 午餐休息14:00~14:30 特邀演讲 Dr. Sopheak Sorn 14:30~15:00 特邀演讲 Dr. Sunly Khimphun 15:00~15:30 特邀演讲 Dr. Gansukh Tumurtushaa 15:30~16:00 特邀演讲 Dr. Yu Lin 16:00~16:30 茶歇 16:30~17:00 特邀演讲 Dr. Yun-Long Zhang 17:00~17:15 ICQGC-01 Mr. Phearun Rithy 17:15~17:30 ICQGC-02 Mr. Vannthorn Chork 18:00~20:00 晚宴
通过操纵包括纳米颗粒(NP)(NPS)的颗粒的形状和大小来设计,布置和应用结构,设备和系统。因此,纳米技术正在推进跨天然科学的各种关键应用到生物医学领域(Haleem等,2023)。尽管纳米材料在生物医学领域表现出巨大的潜力,但目前在该领域缺乏监管指导,这对于为制造商,决策者,卫生机构和公众提供法律确定性很重要。因此,本书还讨论了纳米材料针对临床应用的法规。此外,由于预计纳米材料会显着影响生物医学领域,因此在本书中还讨论了它们的未来方向,以突出读者的当前趋势。
多糖和蛋白质等天然聚合物被广泛用作制造先进材料的基质[1-4]。在众多的天然聚合物中,细菌纳米纤维素 (BNC)、纤维素纳米纤维 (CNF) 和纤维素纳米晶体 (CNC)(即纤维素的三种纳米形式)目前在现代科学和技术领域备受关注[5-7]。这些纳米级纤维素基质的环保性质、独特性能和多种功能正在被研究,以设计先进的纳米复合材料和纳米杂化材料,应用于力学、光学、电子、能源、环境、生物和医学等众多领域。纳米材料特刊的标题为“先进的纳米纤维素基材料:生产、特性和应用”,汇集了来自世界顶尖科学家研究纳米纤维素的原创研究和评论文章。因此,本期特刊收集了一篇关于纤维素纳米材料表征的评论论文 [8] 和八篇研究论文,重点关注 BNC [9-11]、CNF [12-15] 和 CNC [16] 用作复合材料的增强材料 [13-15] 以及生产燃料电池的离子交换膜 [9]、组织工程和伤口愈合的贴片 [10, 11] 以及用于癌症治疗的纳米系统或纳米载体 [15, 16]。在题为“纳米级红外光谱表征纤维素纳米材料的最新进展”的论文中,Zhu 等人。 [ 8 ] 综述了当前最先进的纳米级红外光谱和成像技术,即基于原子力显微镜的红外光谱 (AFM-IR) 和红外散射扫描近场光学显微镜 (IR s-SNOM),在表征纤维素纳米材料方面的应用最新进展。作者指出,AFM-IR 和 IR s-SNOM 是两种用于纳米级空间分辨率成分分析和化学映射的技术,还可以提供有关纤维素纳米材料的机械、热和电性能的深刻信息 [ 8 ]。Vilela 等人的研究。 [9] 证明了将 BNC(即微生物胞外多糖)与水溶性阴离子磺化木质素衍生物(即木质素磺酸盐)和天然交联剂(即单宁酸)结合起来生产具有良好机械性能(最大杨氏模量约 8.2 GPa)和吸湿能力(48 小时后约 78%)和最大离子电导率为 23 mS cm−1(在 94 ◦ C 和 98% 相对湿度下)的独立均质膜的可行性。尽管所实现的电导率值与文献中报道的其他全生物基离子交换膜相当或更高,但它们仍然比目前燃料电池中使用的标准商用 NafionTM 离聚物低两个数量级。尽管如此,作者认为,这项研究可能有助于开发环境友好型导电隔膜的漫长而艰辛的道路,特别是通过利用农业和工业副产品的剩余原材料 [ 9 ]。Kutov á 等人的研究也同样有趣。[ 10 ] 研究了干燥方法(风干或冷冻干燥)和随后的氩等离子体改性对导电隔膜的影响。
石墨烯被认为是一种高级材料,它将在许多行业中产生重大影响,包括复合材料,电子,生物医学和医疗保健,电池和先进材料。由于其独特的物理化学特性,其潜在的应用在广泛的行业中,但高昂的国际石墨烯市场价格对其商业化产生了负面影响。迄今为止,自2019年建立石墨烯平台以来,该小组已利用庞大的纳米技术功能来开发具有成本效益的石墨烯技术。
本书包含的信息均来自可靠且备受推崇的来源。我们已尽合理努力发布可靠的数据和信息,但作者和出版商不能对所有材料的有效性或其使用后果承担责任。作者和出版商已尝试追踪本出版物中复制的所有材料的版权持有者,如果未获得以这种形式发布的许可,我们向版权持有者道歉。如果任何版权材料尚未得到承认,请写信告知我们,以便我们在将来的重印中纠正。